Pregunta
upstudy study bank question image url

Use implicit differentiation to find \( \frac{d y}{d x} \) \( 3 x^{2} y+2 x y^{2}=-6 \)

Ask by Lyons Bowers. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( \frac{dy}{dx} = -\frac{6xy + 2y^{2}}{3x^{2} + 4xy} \)

Solución

Find the first order derivative with respect to \( x \) for \( 3x^2y+2xy^2=-6 \). Find the first derivative by following steps: - step0: Find the derivative with respect to \(x\): \(3x^{2}y+2xy^{2}=-6\) - step1: Take the derivative: \(\frac{d}{dx}\left(3x^{2}y+2xy^{2}\right)=\frac{d}{dx}\left(-6\right)\) - step2: Calculate the derivative: \(6xy+3x^{2}\frac{dy}{dx}+2y^{2}+4xy\frac{dy}{dx}=\frac{d}{dx}\left(-6\right)\) - step3: Calculate the derivative: \(6xy+3x^{2}\frac{dy}{dx}+2y^{2}+4xy\frac{dy}{dx}=0\) - step4: Simplify: \(6xy+2y^{2}+\left(3x^{2}+4xy\right)\frac{dy}{dx}=0\) - step5: Move the constant to the right side: \(\left(3x^{2}+4xy\right)\frac{dy}{dx}=0-\left(6xy+2y^{2}\right)\) - step6: Subtract the terms: \(\left(3x^{2}+4xy\right)\frac{dy}{dx}=-6xy-2y^{2}\) - step7: Divide both sides: \(\frac{\left(3x^{2}+4xy\right)\frac{dy}{dx}}{3x^{2}+4xy}=\frac{-6xy-2y^{2}}{3x^{2}+4xy}\) - step8: Divide the numbers: \(\frac{dy}{dx}=-\frac{6xy+2y^{2}}{3x^{2}+4xy}\) The derivative of \( \frac{dy}{dx} \) with respect to \( x \) for the given equation \( 3x^{2}y+2xy^{2}=-6 \) is \( \frac{dy}{dx} = -\frac{6xy+2y^{2}}{3x^{2}+4xy} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find \( \frac{dy}{dx} \) using implicit differentiation, we start with the equation \( 3x^2y + 2xy^2 = -6 \). Differentiating both sides with respect to \( x \) gives: \[ \frac{d}{dx}(3x^2y) + \frac{d}{dx}(2xy^2) = \frac{d}{dx}(-6) \] Using the product rule on both terms, we have: \[ 3x^2\frac{dy}{dx} + 6xy + 2y^2 + 2x \frac{dy}{dx} = 0 \] Now, let's group the terms involving \( \frac{dy}{dx} \): \[ (3x^2 + 2x)\frac{dy}{dx} + 6xy + 2y^2 = 0 \] Isolating \( \frac{dy}{dx} \), we find: \[ (3x^2 + 2x)\frac{dy}{dx} = -6xy - 2y^2 \] Finally, we can express \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{-6xy - 2y^2}{3x^2 + 2x} \] And voilà! That's our derivative! For a little historical twist, implicit differentiation has roots in the development of calculus, with contributions from greats like Leibniz and Newton in the 17th century. They laid the groundwork that allows us to derive relationships between variables even when they're not isolated. Now, on the application side, implicit differentiation is super handy in real-world scenarios, like in physics when dealing with curves of motion that depend on multiple changing variables. You can use this method to analyze relationships in any situation where explicit equations aren’t feasible!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad