Pregunta
upstudy study bank question image url

9:20 PM Wed Feb 26 \( 25 \% \) Emilio Mejia F... PP. 5 Expected values of random va... Video 49:48 V A researcher recorded the number of cows on each farm in the county. Cows per farm \[ \begin{array}{llllllllllllllllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 3 & 3 & 3 & 3 & 3 & 52 & 52 & 52 & 52 & 52 \end{array} \] \( X \) is the number of cows that a randomly chosen farm has. What is the expected value of \( X \) ? Write your answer as a decimal. \( \square \) Submit Next up

Ask by Pritchard Parsons. in Puerto Rico
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The expected value of \( X \) is 13.9 cows per farm.

Solución

To compute the expected value of X, the number of cows per farm, we use the formula for the mean of a discrete random variable. Step 1: List the data and count the frequency of each value. • There are 9 farms with 0 cows. • There are 6 farms with 3 cows. • There are 5 farms with 52 cows. Step 2: Calculate the total number of cows. • Farms with 0 cows contribute 9 × 0 = 0. • Farms with 3 cows contribute 6 × 3 = 18. • Farms with 52 cows contribute 5 × 52 = 260. Total number of cows = 0 + 18 + 260 = 278. Step 3: Calculate the total number of farms. Total farms = 9 + 6 + 5 = 20. Step 4: Compute the expected value. Expected value, E(X) = (Total number of cows)/(Total number of farms) = 278/20 = 13.9. Final answer as a decimal: 13.9

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the expected value \( E(X) \) of the random variable \( X \) (the number of cows on a randomly chosen farm), we first determine the frequency of each count of cows. The count of cows is represented as follows: 8 farms have 0 cows, 6 farms have 3 cows, and 5 farms have 52 cows. This means there are a total of \( 8 + 6 + 5 = 19 \) farms. The expected value is calculated using the formula: \[ E(X) = \frac{(0 \cdot 8) + (3 \cdot 6) + (52 \cdot 5)}{19} = \frac{0 + 18 + 260}{19} = \frac{278}{19} \approx 14.63 \] That means the expected value of \( X \) is approximately 14.63 cows per farm! Now, how about a little context with cow facts? In the U.S., there are about 90 million cows and calves, making it one of the largest dairy producers in the world! Each farm contributes to the overall yield, and understanding statistics like the expected value helps farmers plan their resources better. As for applying this knowledge practically, it’s essential to ensure you include all unique counts and their frequencies when calculating expected values. A common mistake is forgetting to account for all variations or overlooking farms with zero cows, which skews the results! Always double-check your data entries for accuracy!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad