63. Check My Understanding What are solutions of \( \sin \theta \sin 2 \theta=0 \) on the interval \( [0,2 \pi) \) ? Select 4 choice(s) \( \pi \) \( \frac{3 \pi}{2} \) \( \frac{3 \pi}{4} \) \( \frac{\pi}{3} \) \( \frac{\pi}{4} \) \( \frac{2 \pi}{3} \) 0 \( \frac{\pi}{2} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To solve the equation \( \sin \theta \sin 2 \theta=0 \), we can look at each factor separately. The first factor, \( \sin \theta = 0 \), gives solutions at \( \theta = 0, \pi, 2\pi \). Since we're restricted to the interval \( [0, 2\pi) \), we keep \( 0 \) and \( \pi \). For the second factor, \( \sin 2\theta = 0 \), we find solutions at \( 2\theta = n\pi \) for \( n \in \mathbb{Z} \), which results in \( \theta = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2} \). Putting it all together, the solutions are \( 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2} \). The correct choices from your list of provided solutions are \( \pi \), \( \frac{3\pi}{2} \), \( 0 \), and \( \frac{\pi}{2} \).
