Pregunta
upstudy study bank question image url

Analyze the polynomial function \( f(x)=x^{2}(x-3) \) using parts (a) through (e). (a) Determine the end behavior of the graph of the function. The graph of \( f \) behaves like \( y=x^{3} \) for large values of \( |x| \). (b) Find the \( x \) - and \( y \)-intercepts of the graph of the function. The \( x \)-intercept(s) is/are 0,3 . (Simplify your answer. Type an integer or a fraction. Use a comma to separate answers as needed. Type each answer only once.) The \( y \)-intercept is 0 . (Simplify your answer. Type an integer or a fraction.) (c) Determine the zeros of the function and their multiplicity. Use this information to determine whether the graph crosses or touches the \( x \)-axis at each \( x \)-interce The zero(s) of \( f \) is/are \( \square \). (Simplify your answer. Type an integer or a fraction. Use a comma to separate answers as needed. Type each answer only once.)

Ask by Ball Simpson. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The zeros of \( f(x) \) are 0 and 3. At x = 0, the graph touches the x-axis, and at x = 3, it crosses the x-axis.

Solución

We start with the given function:   f(x) = x²(x – 3) Part (a): End behavior The degree of f(x) is 3 (a cubic) and the leading term (after expansion) is x³. Therefore, for large |x|, the graph of f behaves like y = x³:  • As x → ∞, f(x) → ∞.  • As x → –∞, f(x) → –∞. Part (b): Intercepts • x-intercepts: Set f(x) = 0:   x²(x – 3) = 0 ⇒ x = 0 or x – 3 = 0 ⇒ x = 3.  Thus, the x-intercepts are x = 0 and x = 3. • y-intercept: Evaluate f(0):   f(0) = 0²(0 – 3) = 0.  Thus, the y-intercept is y = 0. Part (c): Zeros and their Multiplicities The function factors as f(x) = x²(x – 3), so the zeros are:  • x = 0 (this factor appears as x², so its multiplicity is 2).  • x = 3 (this factor appears to the power 1, so its multiplicity is 1). Interpretation regarding the x-axis:  • At x = 0, because the multiplicity is 2 (an even number), the graph touches the x-axis at this zero and bounces off.  • At x = 3, because the multiplicity is 1 (an odd number), the graph crosses the x-axis at this zero. Thus, the zeros of f(x) are 0 and 3; the graph touches at x = 0 and crosses at x = 3.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The zeros of \( f \) are 0 (with a multiplicity of 2) and 3 (with a multiplicity of 1). This means that the graph will touch the x-axis at \( x = 0 \) and cross it at \( x = 3 \). To further corroborate these findings, analyzing the multiplicities reveals that even multiplicities (like the 2 at zero) indicate the graph touches the x-axis, remaining on the same side, while odd multiplicities (like the 1 at three) mean the graph crosses the x-axis, switching sides as it does. This gives us an insight into how the polynomial interacts with the x-axis.

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad