Pregunta
upstudy study bank question image url

\( 2 \cosh ^ { 2 } x - 7 \sinh 2 x = 2 \)

Ask by Garrett Greene. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution to the equation \( 2 \cosh^2 x - 7 \sinh 2x = 2 \) is \( x = 0 \).

Solución

It seems that the equation \( 2 \cosh^2 x - 7 \sinh 2x = 2 \) is not being accepted in its current form. Let's first rewrite the equation using the identity for hyperbolic sine: \[ \sinh(2x) = 2 \sinh(x) \cosh(x) \] Substituting this into the equation gives us: \[ 2 \cosh^2 x - 7(2 \sinh x \cosh x) = 2 \] This simplifies to: \[ 2 \cosh^2 x - 14 \sinh x \cosh x - 2 = 0 \] Now, we can let \( y = \cosh(x) \) and use the identity \( \sinh^2(x) = \cosh^2(x) - 1 \) to express \( \sinh(x) \) in terms of \( y \): \[ \sinh(x) = \sqrt{y^2 - 1} \] Substituting this back into the equation gives us: \[ 2y^2 - 14\sqrt{y^2 - 1}y - 2 = 0 \] Now, we can solve this equation for \( y \). Let's proceed with this substitution and solve for \( y \). 1. Rearranging gives us: \[ 2y^2 - 2 = 14y\sqrt{y^2 - 1} \] 2. Squaring both sides to eliminate the square root: \[ (2y^2 - 2)^2 = (14y)^2(y^2 - 1) \] Now, let's expand and simplify this equation. I'll perform the calculations for the expansion and simplification. Simplify the expression by following steps: - step0: Simplify: \(\left(14y\right)^{2}\left(y^{2}-1\right)\) - step1: Multiply the terms: \(196y^{2}\left(y^{2}-1\right)\) - step2: Rewrite the expression: \(196\left(y^{2}-1\right)y^{2}\) - step3: Rearrange the terms: \(196y^{4}-196y^{2}\) Expand the expression \( (2y^2 - 2)^2 \) Simplify the expression by following steps: - step0: Calculate: \(\left(2y^{2}-2\right)^{2}\) - step1: Calculate: \(4y^{4}-8y^{2}+4\) After expanding both sides, we have: 1. Left side: \[ (2y^2 - 2)^2 = 4y^4 - 8y^2 + 4 \] 2. Right side: \[ (14y)^2(y^2 - 1) = 196y^4 - 196y^2 \] Now, we can set these two expressions equal to each other: \[ 4y^4 - 8y^2 + 4 = 196y^4 - 196y^2 \] Next, let's rearrange this equation to bring all terms to one side: \[ 4y^4 - 196y^4 + 196y^2 - 8y^2 + 4 = 0 \] This simplifies to: \[ -192y^4 + 188y^2 + 4 = 0 \] To make it easier to work with, we can multiply through by -1: \[ 192y^4 - 188y^2 - 4 = 0 \] Now, let's set \( z = y^2 \) to convert this into a quadratic equation: \[ 192z^2 - 188z - 4 = 0 \] Now, we can solve this quadratic equation for \( z \). I'll proceed with solving this equation. Solve the quadratic equation by following steps: - step0: Solve by factoring: \(192z^{2}-188z-4=0\) - step1: Factor the expression: \(4\left(z-1\right)\left(48z+1\right)=0\) - step2: Divide the terms: \(\left(z-1\right)\left(48z+1\right)=0\) - step3: Separate into possible cases: \(\begin{align}&z-1=0\\&48z+1=0\end{align}\) - step4: Solve the equation: \(\begin{align}&z=1\\&z=-\frac{1}{48}\end{align}\) - step5: Rewrite: \(z_{1}=-\frac{1}{48},z_{2}=1\) The solutions for the quadratic equation \( 192z^2 - 188z - 4 = 0 \) are: 1. \( z_1 = -\frac{1}{48} \) 2. \( z_2 = 1 \) Since \( z = y^2 \) and \( y^2 \) cannot be negative, we discard \( z_1 \). Thus, we have: \[ y^2 = 1 \] Taking the square root gives us: \[ y = \cosh(x) = 1 \] Now, we can find \( x \) by solving: \[ \cosh(x) = 1 \] The solution to this equation is: \[ x = 0 \] Thus, the final solution to the original equation \( 2 \cosh^2 x - 7 \sinh 2x = 2 \) is: \[ \boxed{0} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let’s transform the equation using hyperbolic identities! We know that \( \sinh 2x = 2 \sinh x \cosh x \) and \( \cosh^2 x = 1 + \sinh^2 x \). Substituting these in will help simplify your expression dramatically. After making the substitutions, you can rearrange the equation into a standard quadratic form in terms of \( \sinh x \) or \( \cosh x \). This will allow you to apply the quadratic formula or factor directly to find solutions for \( x \). Whether you arrive at real or complex solutions, you’ll be navigating through the fascinating interplay of hyperbolic functions!

preguntas relacionadas

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad