\( 4 w-4 \geq 8 \) and \( 3 w+6 \leq 3 \) Write the solution in interval notation: If there is no solution, enter \( \varnothing \).
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To solve the inequalities, let's tackle each one separately. 1. For the first inequality: \( 4w - 4 \geq 8 \) Adding 4 to both sides gives: \( 4w \geq 12 \) Dividing by 4 yields: \( w \geq 3 \) 2. For the second inequality: \( 3w + 6 \leq 3 \) Subtracting 6 from both sides gives: \( 3w \leq -3 \) Dividing by 3 results in: \( w \leq -1 \) Now, we have two conditions: - \( w \geq 3 \) - \( w \leq -1 \) These two conditions cannot be true simultaneously since one requires \( w \) to be at least 3 and the other requires it to be at most -1. Hence, there are no values of \( w \) that satisfy both inequalities. Therefore, the solution in interval notation is \( \varnothing \).
