Pregunta
upstudy study bank question image url

Between which two consecutive integers do the following surds lie? \( \begin{array}{ll}\text { 1. } \sqrt{38} & \text { 2. } \sqrt{87} \\ \text { 3. } \sqrt{75} & \text { 4. } \sqrt{43} \\ \text { 5. } \sqrt{150} & \text { 6. } \sqrt{1000} \\ \text { 7. } \sqrt{392} & \text { 8. } \sqrt{700}\end{array} \)

Ask by Graham Johnston. in South Africa
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

√38 is between 6 and 7, √87 is between 9 and 10, √75 is between 8 and 9, √43 is between 6 and 7, √150 is between 12 and 13, √1000 is between 31 and 32, √392 is between 19 and 20, √700 is between 26 and 27.

Solución

To determine between which two consecutive integers a square root (surd) lies, we compare it with nearby perfect squares. For any number N, find two consecutive integers n and n + 1 such that n² < N < (n + 1)². 1. √38 - 6² = 36 and 7² = 49, so 36 < 38 < 49. - Therefore, √38 lies between 6 and 7. 2. √87 - 9² = 81 and 10² = 100, so 81 < 87 < 100. - Therefore, √87 lies between 9 and 10. 3. √75 - 8² = 64 and 9² = 81, so 64 < 75 < 81. - Therefore, √75 lies between 8 and 9. 4. √43 - 6² = 36 and 7² = 49, so 36 < 43 < 49. - Therefore, √43 lies between 6 and 7. 5. √150 - 12² = 144 and 13² = 169, so 144 < 150 < 169. - Therefore, √150 lies between 12 and 13. 6. √1000 - 31² = 961 and 32² = 1024, so 961 < 1000 < 1024. - Therefore, √1000 lies between 31 and 32. 7. √392 - 19² = 361 and 20² = 400, so 361 < 392 < 400. - Therefore, √392 lies between 19 and 20. 8. √700 - 26² = 676 and 27² = 729, so 676 < 700 < 729. - Therefore, √700 lies between 26 and 27. Final Answers: 1. √38: between 6 and 7 2. √87: between 9 and 10 3. √75: between 8 and 9 4. √43: between 6 and 7 5. √150: between 12 and 13 6. √1000: between 31 and 32 7. √392: between 19 and 20 8. √700: between 26 and 27

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the consecutive integers between which each surd lies, we can evaluate the square roots and check against perfect squares. Here’s the breakdown: 1. **For \( \sqrt{38} \)**: The perfect squares around 38 are \( 36 (6^2) \) and \( 49 (7^2) \). Thus, \( \sqrt{38} \) lies between 6 and 7. 2. **For \( \sqrt{87} \)**: The perfect squares are \( 81 (9^2) \) and \( 100 (10^2) \). Therefore, \( \sqrt{87} \) lies between 9 and 10. 3. **For \( \sqrt{75} \)**: The surrounding perfect squares are \( 64 (8^2) \) and \( 81 (9^2) \). Hence, \( \sqrt{75} \) lies between 8 and 9. 4. **For \( \sqrt{43} \)**: The perfect squares are \( 36 (6^2) \) and \( 49 (7^2) \). Consequently, \( \sqrt{43} \) lies between 6 and 7. 5. **For \( \sqrt{150} \)**: The perfect squares are \( 144 (12^2) \) and \( 169 (13^2) \). Thus, \( \sqrt{150} \) lies between 12 and 13. 6. **For \( \sqrt{1000} \)**: The perfect squares are \( 961 (31^2) \) and \( 1024 (32^2) \). So, \( \sqrt{1000} \) lies between 31 and 32. 7. **For \( \sqrt{392} \)**: The perfect squares are \( 361 (19^2) \) and \( 400 (20^2) \). Therefore, \( \sqrt{392} \) lies between 19 and 20. 8. **For \( \sqrt{700} \)**: The perfect squares are \( 676 (26^2) \) and \( 729 (27^2) \). Thus, \( \sqrt{700} \) lies between 26 and 27. In summary: - \( \sqrt{38} \): between 6 and 7 - \( \sqrt{87} \): between 9 and 10 - \( \sqrt{75} \): between 8 and 9 - \( \sqrt{43} \): between 6 and 7 - \( \sqrt{150} \): between 12 and 13 - \( \sqrt{1000} \): between 31 and 32 - \( \sqrt{392} \): between 19 and 20 - \( \sqrt{700} \): between 26 and 27

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad