Find all excluded values for the expression. That is, find all values of \( y \) for which the expression is undefined. \( \frac{y-5}{y^{2}-64} \) If there is more than one value, separate them with commas.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find the excluded values for the expression \( \frac{y-5}{y^{2}-64} \), we need to identify when the denominator is equal to zero, as division by zero is undefined. The denominator is \( y^{2} - 64 \). We can factor this difference of squares: \[ y^{2} - 64 = (y - 8)(y + 8) \] Setting the denominator equal to zero gives us: \[ (y - 8)(y + 8) = 0 \] From here, we can solve for \( y \): 1. \( y - 8 = 0 \) leads to \( y = 8 \) 2. \( y + 8 = 0 \) leads to \( y = -8 \) Thus, the excluded values for the expression are \( y = 8, -8 \).
