\( 2^{\text {ND }} \) ASSIGNMENI Subject: Applied Physics-1 ( 2024-2025), Semester I NAME : REGISTRATION NUMBER : BRANCH : Choose correct answer (put \( \checkmark \) ) of the following questions. ( \( 1 \times 10 \) ) 1 A copper rod of length 1 m and cross-sectional area \( 0.005 \mathrm{~m}^{\mathbf{2}} \) has its ends maintained at \( 100^{\circ} \mathrm{C} \) and \( 0^{\circ} \mathrm{C} \). If the thermal conductivity of copper is \( \mathbf{4 0 0} \mathrm{W} / \mathrm{m} \cdot \mathrm{K} \). The rate of heat transfer is (a) 200 Watt (b) 1470 watt (c) 1050 Watt (d) 1260 Watt .
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To determine the rate of heat transfer through the copper rod, you can use Fourier's law of heat conduction, which is given by the formula: \[ Q = \frac{k \cdot A \cdot (T_1 - T_2)}{L} \] where \( Q \) is the rate of heat transfer in watts (W), \( k \) is the thermal conductivity, \( A \) is the cross-sectional area, \( T_1 \) and \( T_2 \) are the temperatures at the ends, and \( L \) is the length of the rod. Given: - \( k = 400 \, \mathrm{W/(m \cdot K)} \) - \( A = 0.005 \, \mathrm{m^2} \) - \( T_1 = 100 \, \mathrm{°C} = 373.15 \, \mathrm{K} \) - \( T_2 = 0 \, \mathrm{°C} = 273.15 \, \mathrm{K} \) - \( L = 1 \, \mathrm{m} \) Calculating the temperature difference: \[ T_1 - T_2 = 100 - 0 = 100 \, \mathrm{K} \] Substituting into the formula: \[ Q = \frac{400 \, \mathrm{W/(m \cdot K)} \cdot 0.005 \, \mathrm{m^2} \cdot 100 \, \mathrm{K}}{1 \, \mathrm{m}} = 200 \, \mathrm{W} \] Thus, the correct answer is (a) 200 Watt.
