Solve the equation \( x^{2}+9 x-10=0 \) by factoring. \[ x=\square \] If there is more than 1 solution, separate the values with a comma.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To solve the equation \( x^{2}+9 x-10=0 \) by factoring, we need to find two numbers that multiply to \(-10\) (the constant term) and add to \(9\) (the coefficient of the linear term). The numbers \(10\) and \(-1\) fit this requirement since \(10 \cdot (-1) = -10\) and \(10 + (-1) = 9\). Now we can factor the equation: \[ (x + 10)(x - 1) = 0 \] Setting each factor equal to zero gives us: \[ x + 10 = 0 \quad \Rightarrow \quad x = -10 \] \[ x - 1 = 0 \quad \Rightarrow \quad x = 1 \] Therefore, the solutions are: \[ x = -10, 1 \]
