Pregunta
Consider the expression given below. Simplify this expression in the form \( A \sqrt{B} \) and place the appropriate expressions into the boxes shown below: \( \sqrt{m^{13}} \) Answer: \( \sqrt{m^{13}}=A \sqrt{B} \), where \( A=\square \) and \( B=\square \) Preview \( A \) : Preview \( B \) : \( > \) Next Question
Ask by Crawford John. in the United States
Feb 27,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( A = m^{6} \) and \( B = m \).
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Bonus Knowledge
To simplify \( \sqrt{m^{13}} \), we can break it down using the properties of exponents. We know that \( \sqrt{m^{13}} = m^{13/2} \), which can be written as \( m^6 \sqrt{m} \) because \( 13/2 \) is \( 6 \) (the whole part) and \( 1 \) (the fractional part). Therefore, we get: \[ A = m^6 \] \[ B = m \] So the final answer is \( \sqrt{m^{13}} = m^6 \sqrt{m} \), where \( A = m^6 \) and \( B = m \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium