Pregunta
upstudy study bank question image url

With 36 g of copper. 2. A swimming pool is filled in 30 hours by two identica pumps. How much quicker would it be filled if five similar pumps were used instead?

Ask by Salinas Mccarthy. in Papua New Guinea
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Using five pumps would fill the swimming pool 18 hours quicker than using two pumps.

Solución

Let's break down the problem step by step. ### Known Conditions: 1. Two identical pumps fill a swimming pool in 30 hours. 2. We need to find out how much quicker the pool would be filled if five similar pumps were used. ### Step 1: Calculate the rate of one pump If two pumps can fill the pool in 30 hours, the rate of the two pumps together is: \[ \text{Rate of 2 pumps} = \frac{1 \text{ pool}}{30 \text{ hours}} = \frac{1}{30} \text{ pools per hour} \] To find the rate of one pump, we divide this rate by 2: \[ \text{Rate of 1 pump} = \frac{1}{30} \div 2 = \frac{1}{60} \text{ pools per hour} \] ### Step 2: Calculate the rate of five pumps Now, if we have five pumps, their combined rate would be: \[ \text{Rate of 5 pumps} = 5 \times \frac{1}{60} = \frac{5}{60} = \frac{1}{12} \text{ pools per hour} \] ### Step 3: Calculate the time taken by five pumps to fill the pool To find out how long it takes for five pumps to fill the pool, we take the reciprocal of their rate: \[ \text{Time taken by 5 pumps} = \frac{1 \text{ pool}}{\frac{1}{12} \text{ pools per hour}} = 12 \text{ hours} \] ### Step 4: Calculate the difference in time Now, we can find out how much quicker it is to fill the pool with five pumps compared to two pumps: \[ \text{Time difference} = 30 \text{ hours} - 12 \text{ hours} = 18 \text{ hours} \] ### Final Answer Using five pumps would fill the swimming pool **18 hours quicker** than using two pumps.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

If two identical pumps fill the pool in 30 hours, they have a combined flow rate that fills 1/30 of the pool in one hour. Therefore, each pump fills 1/60 of the pool in one hour. With five pumps working together, their combined rate would be 5 times that of one pump. This means they would fill the pool at a rate of 5/60, or 1/12 of the pool per hour. To fill the pool, it would take the five pumps 12 hours, which is 18 hours quicker than the two pumps! If you were to visualize this in a fun way, think of the pumps as a team of superheroes! Alone, they can take their sweet time saving the city, but working together in larger numbers, they can quickly overcome the task and save the day much faster!

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad