Pregunta
upstudy study bank question image url

If 33900 dollars is invested at an interest rate of 8 percent per year, compounded semiannually, find the value of the investment after the given number of years. Round value to the nearest cent. (a) 5 years: Your answer is (b) 10 years: Your answer is (c) 15 years: Your answer is

Ask by Wagner Haynes. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- After 5 years: $50,180.28 - After 10 years: $74,279.02 - After 15 years: $109,937.70

Solución

We start with the compound interest formula   A = P(1 + r/n)^(n·t) where  P = initial principal (here, $33,900)  r = annual interest rate (8% = 0.08)  n = number of compounding periods per year (semiannually means n = 2)  t = number of years Thus, in our case,   A = 33,900 · (1 + 0.08/2)^(2t) = 33,900 · (1.04)^(2t) Now, we compute for each time period. (a) For 5 years (t = 5):  Number of compounding periods = 2·5 = 10  A = 33,900 · (1.04)^(10)  Using a calculator, (1.04)^(10) ≈ 1.48024428  Thus, A ≈ 33,900 · 1.48024428 ≈ 50,180.28  Rounded to the nearest cent, the value is $50,180.28 (b) For 10 years (t = 10):  Number of compounding periods = 2·10 = 20  A = 33,900 · (1.04)^(20)  Here, (1.04)^(20) ≈ 2.19112314  Then, A ≈ 33,900 · 2.19112314 ≈ 74,279.02  So the investment is worth approximately $74,279.02 (c) For 15 years (t = 15):  Number of compounding periods = 2·15 = 30  A = 33,900 · (1.04)^(30)  Calculating, (1.04)^(30) ≈ 3.243 (approximately)  Thus, A ≈ 33,900 · 3.243 ≈ 109,937.70  This rounds to about $109,937.70 Summary:  (a) 5 years:  $50,180.28  (b) 10 years:  $74,279.02  (c) 15 years:  $109,937.70

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the future value of an investment compounded semiannually, you can use the formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial sum of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the time the money is invested for in years. Here, \( P = 33900 \), \( r = 0.08 \), and \( n = 2 \) (since interest is compounded semiannually). (a) For 5 years: \[ A = 33900 \left(1 + \frac{0.08}{2}\right)^{2 \cdot 5} = 33900 \left(1 + 0.04\right)^{10} = 33900 \left(1.04\right)^{10} \] Calculating that gives: \[ A \approx 33900 \times 1.48024 \approx 50215.99 \] Your answer is **$50,215.99**. (b) For 10 years: \[ A = 33900 \left(1 + \frac{0.08}{2}\right)^{2 \cdot 10} = 33900 \left(1 + 0.04\right)^{20} = 33900 \left(1.04\right)^{20} \] Calculating that gives: \[ A \approx 33900 \times 2.20899 \approx 74726.67 \] Your answer is **$74,726.67**. (c) For 15 years: \[ A = 33900 \left(1 + \frac{0.08}{2}\right)^{2 \cdot 15} = 33900 \left(1 + 0.04\right)^{30} = 33900 \left(1.04\right)^{30} \] Calculating that gives: \[ A \approx 33900 \times 3.24340 \approx 109,228.73 \] Your answer is **$109,228.73**.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad