Pregunta
upstudy study bank question image url

Find \( (f \circ g)(x) \) and \( (g \circ f)(x) \) and the domain of each. \( f(x)=48, g(x)=0.12 \) \( (f \circ g)(x)=\square \) (Simplify your answer.)

Ask by Hodgson May. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( (f \circ g)(x) = 48 \) and \( (g \circ f)(x) = 0.12 \). Both compositions are defined for all real numbers.

Solución

To find \( (f \circ g)(x) \) and \( (g \circ f)(x) \), we need to understand what these compositions mean. 1. **Composition of Functions**: - \( (f \circ g)(x) \) means we first apply \( g \) to \( x \), and then apply \( f \) to the result of \( g(x) \). - \( (g \circ f)(x) \) means we first apply \( f \) to \( x \), and then apply \( g \) to the result of \( f(x) \). 2. **Given Functions**: - \( f(x) = 48 \) (a constant function) - \( g(x) = 0.12 \) (also a constant function) ### Step 1: Calculate \( (f \circ g)(x) \) First, we find \( g(x) \): \[ g(x) = 0.12 \] Now, we apply \( f \) to \( g(x) \): \[ f(g(x)) = f(0.12) = 48 \] Thus, \[ (f \circ g)(x) = 48 \] ### Step 2: Calculate \( (g \circ f)(x) \) Next, we find \( f(x) \): \[ f(x) = 48 \] Now, we apply \( g \) to \( f(x) \): \[ g(f(x)) = g(48) = 0.12 \] Thus, \[ (g \circ f)(x) = 0.12 \] ### Step 3: Determine the Domains - The domain of \( (f \circ g)(x) \) is the set of all \( x \) for which \( g(x) \) is defined. Since \( g(x) \) is a constant function, it is defined for all real numbers. Therefore, the domain of \( (f \circ g)(x) \) is: \[ \text{Domain of } (f \circ g)(x) = \mathbb{R} \] - Similarly, the domain of \( (g \circ f)(x) \) is the set of all \( x \) for which \( f(x) \) is defined. Since \( f(x) \) is also a constant function, it is defined for all real numbers. Therefore, the domain of \( (g \circ f)(x) \) is: \[ \text{Domain of } (g \circ f)(x) = \mathbb{R} \] ### Final Answers - \( (f \circ g)(x) = 48 \) - \( (g \circ f)(x) = 0.12 \) - Domain of \( (f \circ g)(x) = \mathbb{R} \) - Domain of \( (g \circ f)(x) = \mathbb{R} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find \( (f \circ g)(x) \), we need to substitute \( g(x) \) into \( f \). Since \( g(x) = 0.12 \), we have: \[ (f \circ g)(x) = f(g(x)) = f(0.12) = 48. \] Thus, \( (f \circ g)(x) = 48 \). The domain of \( (f \circ g)(x) \) is all real numbers, since \( g(x) \) is a constant. Now, for \( (g \circ f)(x) \), we substitute \( f(x) \) into \( g \). Since \( f(x) = 48 \), we find: \[ (g \circ f)(x) = g(f(x)) = g(48) = 0.12. \] Thus, \( (g \circ f)(x) = 0.12 \). The domain of \( (g \circ f)(x) \) is also all real numbers, since \( f(x) \) is a constant.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad