Pregunta
upstudy study bank question image url

The sum of 6 consecutive even numbers is 126 . What is the fourth number in this sequence?

Ask by Dunn Lawson. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The fourth number in the sequence is 22.

Solución

Let the six consecutive even numbers be represented as n, n+2, n+4, n+6, n+8, n+10. Their sum is: n + (n+2) + (n+4) + (n+6) + (n+8) + (n+10) = 6n + 30 Given the sum is 126: 6n + 30 = 126 Subtract 30 from both sides: 6n = 96 Now, divide by 6: n = 16 The numbers are: 16, 18, 20, 22, 24, 26. The fourth number in this sequence is 22.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve for the fourth number in the sequence, let's denote the first even number as \( x \). The 6 consecutive even numbers can be expressed as \( x, x+2, x+4, x+6, x+8, x+10 \). The sum can be set up as: \[ x + (x+2) + (x+4) + (x+6) + (x+8) + (x+10) = 126 \] Combining like terms gives: \[ 6x + 30 = 126 \] Subtracting 30 from both sides leads to: \[ 6x = 96 \] Dividing by 6 results in: \[ x = 16 \] Now we can identify the consecutive even numbers: 16, 18, 20, 22, 24, and 26. Therefore, the fourth number in this sequence is: \[ \text{Fourth number} = 22 \] 22 is the answer! Now, let’s connect some engaging dots about even numbers. Consecutive even numbers can often be seen in patterns across various cultures and traditions, like pairs of socks or bicycle wheels, where balancing is key. Interestingly, did you know that in the realm of number theory, even numbers are highly significant? They’re the backbone of many mathematical calculations, including geometry and algebra. Moreover, when you enter the world of even-numbered games, they're often perceived favorably. For instance, even-numbered seating in theaters can create perfectly balanced performances, ensuring that no vantage point overpowers another. So, whether it's about math or life, it seems being ‘even’ keeps things smooth and stable!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad