Pregunta
upstudy study bank question image url

Graph the feasible region for the following system of inequalities. \( \begin{array}{l}x+y \leq 5 \\ x-y \geq 6\end{array} \)

Ask by Nunez Ward. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph the feasible region for the inequalities \( x + y \leq 5 \) and \( x - y \geq 6 \): 1. **Graph the lines**: - For \( x + y = 5 \), plot points (0,5) and (5,0). - For \( y = x - 6 \), plot points (0,-6) and (6,0). 2. **Determine the shaded regions**: - Shade below \( x + y = 5 \) since \( y \leq 5 - x \). - Shade below \( y = x - 6 \) since \( y \leq x - 6 \). 3. **Find the intersection point**: - The lines intersect at (11/2, -1/2) ≈ (5.5, -0.5). 4. **Identify the feasible region**: - The overlapping shaded area below both lines represents the feasible region. This region is unbounded and includes all points satisfying both inequalities.

Solución

We want all points (x, y) that satisfy both   (1) x + y ≤ 5  and  (2) x − y ≥ 6. Step 1. Rewrite the Inequalities in Slope‐Intercept Form • For (1), x + y ≤ 5 can be rewritten as y ≤ 5 − x.   This inequality represents all the points on or below the line     x + y = 5  (which has intercepts (0, 5) and (5, 0)). • For (2), x − y ≥ 6 can be rewritten as follows:   x − y ≥ 6  ⟹  –y ≥ 6 − x  ⟹ (multiplying each side by –1, which reverses the inequality)     y ≤ x − 6.   This inequality represents all the points on or below the line     y = x − 6  (which has intercepts (0, –6) and (6, 0)). Step 2. Find the Intersection of the Boundary Lines The two lines are:   Line A: x + y = 5   Line B: y = x − 6 Find their intersection by substituting the expression for y from Line B into Line A:   x + (x − 6) = 5  ⟹  2x − 6 = 5  ⟹  2x = 11  ⟹  x = 11/2. Then,   y = (11/2) − 6 = (11 − 12)/2 = −1/2. Thus, the lines intersect at (11/2, –1/2). Step 3. Graphing the Boundaries and Shading the Feasible Region 1. Draw the line x + y = 5.   • Plot the intercepts (0, 5) and (5, 0).   • Since the inequality is y ≤ 5 − x, shade the region below this line. 2. Draw the line y = x − 6.   • Plot the intercepts (0, –6) and (6, 0).   • Since the inequality is y ≤ x − 6, shade the region below this line. 3. The feasible region is the intersection of these two shaded areas. That is, it consists of all points that lie on (or below) both lines. Step 4. Describe the Feasible Region The feasible region is an unbounded area in the plane. Its boundary consists of:  • The line x + y = 5 (solid line because the inequality is “≤”)  • The line y = x − 6 (solid line because the inequality is “≤”) with the two regions below these lines intersecting. The two lines cross at (11/2, –1/2), which is the “corner point” of the feasible region. Step 5. Sketch (A Description for Your Graph) 1. Draw a set of axes. 2. Plot the point (0, 5) and (5, 0) to draw the line x + y = 5. 3. Plot the points (0, –6) and (6, 0) to draw the line y = x − 6. 4. Mark the intersection point (11/2, –1/2) ≈ (5.5, –0.5). 5. Shade the region that lies below the line x + y = 5. 6. Also shade the region that lies below the line y = x − 6. 7. The feasible region is the overlapping area from these two shadings. That is how you graph the feasible region for the given system of inequalities.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To graph the feasible region for the inequalities \( x + y \leq 5 \) and \( x - y \geq 6 \), start by converting these inequalities into equations to find their boundary lines. 1. For \( x + y = 5 \): This line will intercept the axes at (5,0) and (0,5). Draw a straight line connecting these points, and shade below the line since the inequality is less than or equal to. 2. For \( x - y = 6 \): This line intercepts the axes at (6,0) and (0,-6). Draw the line and shade above it because the inequality is greater than or equal to. Now, the feasible region is where the shaded areas overlap. This will give you a visual representation of solutions that satisfy both inequalities. Happy graphing!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad