Activity 2 Simplify the following WITHOUT the use of a calculator: \( 2.1 \frac{\tan \left(180^{\circ}+x\right) \cdot \cos \left(360^{\circ}-x\right)}{\sin (180-x) \cdot \cos \left(90^{\circ}+x\right)+\cos \left(540^{\circ}+x\right) \cdot \cos (-x)} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To simplify the given expression, we can start by applying some trigonometric identities. 1. **Understanding the Angles**: - \(\tan(180^{\circ} + x) = \tan(x)\) because tangent has a period of \(180^{\circ}\). - \(\cos(360^{\circ} - x) = \cos(x)\) because cosine has a period of \(360^{\circ}\). - \(\sin(180 - x) = \sin(x)\) (sine is positive in the second quadrant). - \(\cos(90^{\circ} + x) = -\sin(x)\). - \(\cos(540^{\circ} + x) = \cos(180^{\circ} + x) = -\cos(x)\) (cosine changes sign). - \(\cos(-x) = \cos(x)\) (cosine is an even function). Now, substituting these identities into the expression gives: \[ 2.1 \frac{\tan(x) \cdot \cos(x)}{\sin(x) \cdot (-\sin(x)) + (-\cos(x)) \cdot \cos(x)} \] This simplifies to: \[ 2.1 \frac{\tan(x) \cdot \cos(x)}{-\sin^2(x) - \cos^2(x)} \] The term \(-\sin^2(x) - \cos^2(x)\) simplifies to \(-1\) (using the Pythagorean identity). This yields: \[ 2.1 \frac{\tan(x) \cdot \cos(x)}{-1} = -2.1 \tan(x) \cdot \cos(x) \] Now, we can utilize the identity \(\tan(x) = \frac{\sin(x)}{\cos(x)}\): Thus, \( -2.1 \tan(x) \cdot \cos(x) = -2.1 \frac{\sin(x)}{\cos(x)} \cdot \cos(x) = -2.1 \sin(x) \). So the final simplified expression is: \[ -2.1 \sin(x) \]
