Pregunta
\( x+y=12 \) \( x-y=10 \) What is the value of the x-determinant for the system shown? -22 -12 -2
Ask by Powell Ryan. in the United States
Feb 27,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The x-determinant for the system is -2.
Solución
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x+y=12\\x-y=10\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=12-y\\x-y=10\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(12-y-y=10\)
- step3: Subtract the terms:
\(12-2y=10\)
- step4: Move the constant to the right side:
\(-2y=10-12\)
- step5: Subtract the numbers:
\(-2y=-2\)
- step6: Change the signs:
\(2y=2\)
- step7: Divide both sides:
\(\frac{2y}{2}=\frac{2}{2}\)
- step8: Divide the numbers:
\(y=1\)
- step9: Substitute the value of \(y:\)
\(x=12-1\)
- step10: Calculate:
\(x=11\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=11\\y=1\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x=11\\y=1\end{array}\right.\)
- step13: Rewrite:
\(\left(x,y\right) = \left(11,1\right)\)
To find the value of the x-determinant for the given system of equations, we first need to solve the system:
1. The equations are:
\[
x + y = 12 \quad (1)
\]
\[
x - y = 10 \quad (2)
\]
2. We can solve these equations simultaneously. From equation (1), we can express \( y \) in terms of \( x \):
\[
y = 12 - x \quad (3)
\]
3. Now, substitute equation (3) into equation (2):
\[
x - (12 - x) = 10
\]
Simplifying this gives:
\[
x - 12 + x = 10
\]
\[
2x - 12 = 10
\]
\[
2x = 22
\]
\[
x = 11
\]
4. Now, substitute \( x = 11 \) back into equation (3) to find \( y \):
\[
y = 12 - 11 = 1
\]
Thus, the solution to the system is \( (x, y) = (11, 1) \).
Now, to find the x-determinant, we can use the coefficients of the equations. The determinant \( D \) for the system of equations in the form \( ax + by = c \) is given by:
\[
D = \begin{vmatrix}
1 & 1 \\
1 & -1
\end{vmatrix}
\]
Calculating this determinant:
\[
D = (1)(-1) - (1)(1) = -1 - 1 = -2
\]
Therefore, the value of the x-determinant for the system is \(-2\).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To solve the system of equations, let's express the equations in matrix form: \[ \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 12 \\ 10 \end{bmatrix} \] The determinant of a \(2 \times 2\) matrix \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is calculated as \( ad - bc \). For our coefficient matrix: \[ \text{Determinant} = (1)(-1) - (1)(1) = -1 - 1 = -2 \] So, the value of the x-determinant for the given system is \(-2\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium