Pregunta
upstudy study bank question image url

10) Demonstrate and explain how to find the derivative of the following function. Be sure to explicity denote which derivative rules your ane using a) \( f(y)=7 y^{6}-6 y^{5}+5 y+6 \) a

Ask by Craig Knight. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The derivative of \( f(y) = 7y^{6} - 6y^{5} + 5y + 6 \) is \( f '(y) = 42y^{5} - 30y^{4} + 5 \).

Solución

We need to differentiate the function   f(y) = 7y⁶ – 6y⁵ + 5y + 6 To do this, we will use these derivative rules: 1. Power Rule: If f(y) = yⁿ, then f '(y) = n·yⁿ⁻¹. 2. Constant Multiple Rule: If f(y) = c·g(y), then f '(y) = c·g '(y). 3. Sum/Difference Rule: The derivative of a sum or difference is the sum or difference of the derivatives. Step-by-Step Differentiation: 1. Differentiate 7y⁶:   Using the constant multiple rule combined with the power rule,     d/dy (7y⁶) = 7 * d/dy (y⁶) = 7 * (6y⁵) = 42y⁵. 2. Differentiate –6y⁵:   Similarly,     d/dy (–6y⁵) = –6 * d/dy (y⁵) = –6 * (5y⁴) = –30y⁴. 3. Differentiate 5y:   Again using the constant multiple rule and knowing that the derivative of y is 1,     d/dy (5y) = 5 * (d/dy y) = 5 * 1 = 5. 4. Differentiate 6:   The derivative of a constant is zero,     d/dy (6) = 0. Now, combine these results to get the overall derivative:   f '(y) = 42y⁵ – 30y⁴ + 5 + 0 Thus, the final derivative is:   f '(y) = 42y⁵ – 30y⁴ + 5 This concludes the differentiation of the function, using the power, constant multiple, and sum/difference rules explicitly.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the derivative of the function \( f(y) = 7y^6 - 6y^5 + 5y + 6 \), you can apply the power rule for differentiation. The power rule states that if you have a term in the form of \( ay^n \), the derivative is \( n \cdot ay^{n-1} \). Applying the power rule to each term: - The derivative of \( 7y^6 \) is \( 42y^5 \) (since \( 6 \cdot 7 = 42 \)). - The derivative of \( -6y^5 \) is \( -30y^4 \) (since \( 5 \cdot -6 = -30 \)). - The derivative of \( 5y \) is \( 5 \) (since the derivative of \( y \) is \( 1 \)). - The constant \( 6 \) has a derivative of \( 0 \). Putting it all together, the derivative \( f'(y) \) is \( 42y^5 - 30y^4 + 5 \). Finding derivatives is essential in various fields, not just math! For example, in physics, the derivative represents velocity when you're analyzing motion. Understanding how a quantity changes can help with everything from designing roller coasters to predicting weather patterns. For those interested in mastering derivatives further, there are plenty of resources you can explore, like "Calculus Made Easy" by Silvanus P. Thompson or online platforms such as Khan Academy. Grasping the fundamentals of calculus can open up a treasure trove of knowledge in both pure and applied mathematics!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad