Pregunta
upstudy study bank question image url

Challenge A cylindrical vase has height 17 in . and radius 3 in . Find the exact surface area of the vase in terms of pi \( \pi \). Suppose a second vase has double the radius, but the same surface area. What is the height of this vase?

Ask by Olson Haynes. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The first vase has a surface area of 120π in². The second vase, with double the radius, has a height of 4 inches.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

The Deep Dive

To find the surface area of the cylindrical vase, we use the formula: \[ \text{Surface Area} = 2\pi r(h + r) \] where \( r \) is the radius and \( h \) is the height. Plugging in the values, we have: \[ \text{Surface Area} = 2\pi (3)(17 + 3) = 2\pi (3)(20) = 120\pi \text{ in}^2. \] Now, for the second vase with double the radius, the radius \( r' = 6 \, \text{in} \) and the surface area remains \( 120\pi \). The formula again gives us: \[ 120\pi = 2\pi(6)(h' + 6) \] Dividing both sides by \( 2\pi \): \[ 60 = 6(h' + 6) \] Simplifying that: \[ 10 = h' + 6 \] Thus, subtracting 6 from both sides: \[ h' = 4 \, \text{in}. \] There you have it! The height of the second vase is 4 inches. Did you know that the concept of cylindrical shapes dates back to ancient civilizations? The Egyptians utilized these shapes in their architecture, like the pyramids, where cylindrical columns were quite common! Their understanding of geometry certainly laid the groundwork for modern mathematics. In practical terms, understanding the surface area of a vase is super useful! If you're planning to paint or decorate it, you'll want to know that area to buy enough materials. Likewise, if you're filling the vase with flowers or decorative items, it helps you gauge how much to buy for that perfect look!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad