Pregunta
upstudy study bank question image url

Factor the polynomial and use the factored form to find the zeros. (Enter your answers as a comma-separated list. Enter all answers using the appropriate multiplicities.) \[ P(x)=x^{3}+5 x^{2}-4 x-20 \] Sketch the graph.

Ask by Moreno Tucker. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The zeros of the polynomial \( P(x) = x^{3} + 5x^{2} - 4x - 20 \) are \( x = 2, -2, -5 \).

Solución

Factor the expression \( x^{3}+5x^{2}-4x-20 \). Factor the expression by following steps: - step0: Factor: \(x^{3}+5x^{2}-4x-20\) - step1: Rewrite the expression: \(x^{2}\times x+x^{2}\times 5-4x-4\times 5\) - step2: Factor the expression: \(x^{2}\left(x+5\right)-4\left(x+5\right)\) - step3: Factor the expression: \(\left(x^{2}-4\right)\left(x+5\right)\) - step4: Factor the expression: \(\left(x-2\right)\left(x+2\right)\left(x+5\right)\) The factored form of the polynomial \( P(x) = x^{3} + 5x^{2} - 4x - 20 \) is \((x-2)(x+2)(x+5)\). To find the zeros of the polynomial, we set each factor equal to zero and solve for \( x \): 1. \( x - 2 = 0 \) gives \( x = 2 \) 2. \( x + 2 = 0 \) gives \( x = -2 \) 3. \( x + 5 = 0 \) gives \( x = -5 \) Therefore, the zeros of the polynomial are \( x = 2, -2, -5 \). To sketch the graph, we can plot these zeros on the coordinate plane and determine the behavior of the polynomial between these points. Since the polynomial is of degree 3, it will have a local maximum or minimum at one of the zeros. The graph will be a cubic curve that opens upward or downward.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To factor the polynomial \( P(x) = x^3 + 5x^2 - 4x - 20 \), you can begin by using synthetic division or the Rational Root Theorem to find possible roots. Upon testing \( x = 2 \), we find that it is a root, allowing us to factor \( P(x) \) as \( (x - 2)(x^2 + 7x + 10) \). Further factoring \( x^2 + 7x + 10 \) gives \( (x + 2)(x + 5) \). Thus, the completely factored form is \( P(x) = (x - 2)(x + 2)(x + 5) \). To find the zeros, set each factor to zero: - \( x - 2 = 0 \) → \( x = 2 \) - \( x + 2 = 0 \) → \( x = -2 \) - \( x + 5 = 0 \) → \( x = -5 \) The zeros of the polynomial are therefore \( 2, -2, -5 \). To sketch the graph, you would plot the points corresponding to the zeros on a coordinate plane: \( (2, 0) \), \( (-2, 0) \), and \( (-5, 0) \). Since the polynomial is cubic with a positive leading coefficient, the graph will start from the bottom left, cross the x-axis at each of the zeros, and continue rising towards the top right, reflecting the behavior of cubic functions.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad