Pregunta
upstudy study bank question image url

3. Considere el sistema dado por: \[ 4 x_{1}+3 x_{2}-x_{3}=4 \] \[ \begin{aligned} 3 x+9 y-3 z & =0 \\ y+z & =1 \\ -2 x-5 y+4 z & =4 \\ -2 x-6 y+3 z & =4 \end{aligned} \quad \text { C. } \quad \begin{aligned} -2 x+6 y-4 z & =0 \\ -x+3 y-z & =0 \\ 5 x-15 y+10 z & =0 \\ x-3 y & =0 \end{aligned} \] A. \( 8 x_{1}-6 x_{2}-2=0 \) B. \[ x_{1}-x_{2}-x_{3}=3 \] i. Determine el orden del sistema, tipo de solución e indique las variables libre y las variables pivotales. ii. Resuelva el sistema por el método de Gauss o de eliminación de Gauss-Jordan.

Ask by Moran Matthews. in Colombia
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The first system has no solution, while the second system has infinitely many solutions where \(x_{1} = \frac{3x_{2}}{4} + \frac{1}{4}\) and \(x_{3} = -\frac{11 + x_{2}}{4}\), with \(x_{2}\) being a free variable.

Solución

Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}8x_{1}-6x_{2}-2=0\\x_{1}-x_{2}-x_{3}=3\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}8x_{1}-6x_{2}-2=0\\x_{1}=3+x_{2}+x_{3}\end{array}\right.\) - step2: Substitute the value of \(x_{1}:\) \(8\left(3+x_{2}+x_{3}\right)-6x_{2}-2=0\) - step3: Simplify: \(22+2x_{2}+8x_{3}=0\) - step4: Evaluate: \(22+8x_{3}+2x_{2}=0\) - step5: Move the expression to the right side: \(2x_{2}=0-\left(22+8x_{3}\right)\) - step6: Subtract the terms: \(2x_{2}=-22-8x_{3}\) - step7: Divide both sides: \(\frac{2x_{2}}{2}=\frac{-22-8x_{3}}{2}\) - step8: Divide the numbers: \(x_{2}=-11-4x_{3}\) - step9: Substitute the value of \(x_{2}:\) \(x_{1}=3-11-4x_{3}+x_{3}\) - step10: Simplify: \(x_{1}=-8-3x_{3}\) - step11: Calculate: \(\left(x_{1},x_{2},x_{3}\right) = \left(-8-3x_{3},-11-4x_{3},x_{3}\right),x_{3} \in \mathbb{R}\) - step12: Alternative Form: \(\textrm{Infinitely many solutions}\) Solve the system of equations \( 4 x_{1}+3 x_{2}-x_{3}=4;3 x+9 y-3 z=0;y+z=1;-2 x-5 y+4 z=4;-2 x-6 y+3 z=4;-2 x+6 y-4 z=0;-x+3 y-z=0;5 x-15 y+10 z=0;x-3 y=0 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}4x_{1}+3x_{2}-x_{3}=4\\3x+9y-3z=0\\y+z=1\\-2x-5y+4z=4\\-2x-6y+3z=4\\-2x+6y-4z=0\\-x+3y-z=0\\5x-15y+10z=0\\x-3y=0\end{array}\right.\) - step1: Rearrange the terms: \(\left\{ \begin{array}{l}4x_{1}+3x_{2}-x_{3}=4\\3x+9y-3z=0\\y+z=1\\-2x-5y+4z=4\\-2x-6y+3z=4\\-2x+6y-4z=0\\-x+3y-z=0\\x-3y=0\end{array}\right.\) - step2: Solve the equation: \(\left\{ \begin{array}{l}x_{3}=-4+4x_{1}+3x_{2}\\3x+9y-3z=0\\y+z=1\\-2x-5y+4z=4\\-2x-6y+3z=4\\-2x+6y-4z=0\\-x+3y-z=0\\x-3y=0\end{array}\right.\) - step3: Substitute the value of \(x_{3}:\) \(\left\{ \begin{array}{l}3x+9y-3z=0\\y+z=1\\-2x-5y+4z=4\\-2x-6y+3z=4\\-2x+6y-4z=0\\-x+3y-z=0\\x-3y=0\end{array}\right.\) - step4: Solve the equation: \(\left\{ \begin{array}{l}3x+9y-3z=0\\y=1-z\\-2x-5y+4z=4\\-2x-6y+3z=4\\-2x+6y-4z=0\\-x+3y-z=0\\x-3y=0\end{array}\right.\) - step5: Substitute the value of \(y:\) \(\left\{ \begin{array}{l}3x+9\left(1-z\right)-3z=0\\-2x-5\left(1-z\right)+4z=4\\-2x-6\left(1-z\right)+3z=4\\-2x+6\left(1-z\right)-4z=0\\-x+3\left(1-z\right)-z=0\\x-3\left(1-z\right)=0\end{array}\right.\) - step6: Simplify: \(\left\{ \begin{array}{l}3x+9-12z=0\\-2x-5+9z=4\\-2x-6+9z=4\\-2x+6-10z=0\\-x+3-4z=0\\x-3+3z=0\end{array}\right.\) - step7: Solve the equation: \(\left\{ \begin{array}{l}3x+9-12z=0\\-2x-5+9z=4\\-2x-6+9z=4\\-2x+6-10z=0\\x=3-4z\\x-3+3z=0\end{array}\right.\) - step8: Substitute the value of \(x:\) \(\left\{ \begin{array}{l}3\left(3-4z\right)+9-12z=0\\-2\left(3-4z\right)-5+9z=4\\-2\left(3-4z\right)-6+9z=4\\-2\left(3-4z\right)+6-10z=0\\3-4z-3+3z=0\end{array}\right.\) - step9: Simplify: \(\left\{ \begin{array}{l}18-24z=0\\-11+17z=4\\-12+17z=4\\-2z=0\\-z=0\end{array}\right.\) - step10: Simplify the expression: \(\left\{ \begin{array}{l}18-24z=0\\-11+17z=4\\-12+17z=4\\-2z=0\end{array}\right.\) - step11: Solve the equation: \(\left\{ \begin{array}{l}z=\frac{3}{4}\\-11+17z=4\\-12+17z=4\\-2z=0\end{array}\right.\) - step12: Substitute the value of \(z:\) \(\left\{ \begin{array}{l}-11+17\times \frac{3}{4}=4\\-12+17\times \frac{3}{4}=4\\-2\times \frac{3}{4}=0\end{array}\right.\) - step13: Simplify: \(\left\{ \begin{array}{l}\frac{7}{4}=4\\\frac{3}{4}=4\\-\frac{3}{2}=0\end{array}\right.\) - step14: Calculate: \(\left\{ \begin{array}{l}x \in \varnothing \\x_{1} \in \varnothing \\x_{2} \in \varnothing \\x_{3} \in \varnothing \\y \in \varnothing \\z \in \varnothing \end{array}\right.\) - step15: Rewrite: \((x, x_{1}, x_{2}, x_{3}, y, z) \in \varnothing\) To solve the given problem, we will analyze the systems of equations step by step. ### Step 1: Analyze the Systems #### System 1: 1. \(4 x_{1}+3 x_{2}-x_{3}=4\) 2. \(3 x+9 y-3 z=0\) 3. \(y+z=1\) 4. \(-2 x-5 y+4 z=4\) 5. \(-2 x-6 y+3 z=4\) 6. \(-2 x+6 y-4 z=0\) 7. \(-x+3 y-z=0\) 8. \(5 x-15 y+10 z=0\) 9. \(x-3 y=0\) #### System 2: 1. \(8 x_{1}-6 x_{2}-2=0\) 2. \(x_{1}-x_{2}-x_{3}=3\) ### Step 2: Determine the Order and Type of Solution #### System 1: - The first system has 8 equations and 6 variables \((x, x_{1}, x_{2}, x_{3}, y, z)\). - The result indicates that there is **no solution** for this system. #### System 2: - The second system has 2 equations and 3 variables \((x_{1}, x_{2}, x_{3})\). - The result indicates that there are **infinitely many solutions** for this system. ### Step 3: Identify Free and Pivotal Variables #### System 1: - Since there is no solution, we cannot identify free or pivotal variables. #### System 2: - In the second system, we have 2 equations and 3 variables, which implies that one variable will be free. - We can express one variable in terms of the others, leading to infinitely many solutions. ### Step 4: Solve System 2 Now, let's solve the second system using the equations: 1. \(8 x_{1}-6 x_{2}-2=0\) 2. \(x_{1}-x_{2}-x_{3}=3\) We can express \(x_{1}\) in terms of \(x_{2}\) from the first equation: \[ 8 x_{1} = 6 x_{2} + 2 \implies x_{1} = \frac{6 x_{2} + 2}{8} = \frac{3 x_{2}}{4} + \frac{1}{4} \] Substituting \(x_{1}\) into the second equation: \[ \frac{3 x_{2}}{4} + \frac{1}{4} - x_{2} - x_{3} = 3 \] \[ \frac{3 x_{2}}{4} - \frac{4 x_{2}}{4} - x_{3} + \frac{1}{4} = 3 \] \[ -\frac{x_{2}}{4} - x_{3} + \frac{1}{4} = 3 \] \[ -x_{3} = 3 + \frac{x_{2}}{4} - \frac{1}{4} \] \[ -x_{3} = \frac{12}{4} + \frac{x_{2}}{4} - \frac{1}{4} = \frac{11 + x_{2}}{4} \] \[ x_{3} = -\frac{11 + x_{2}}{4} \] ### Final Solution for System 2 The solutions can be expressed as: - \(x_{1} = \frac{3 x_{2}}{4} + \frac{1}{4}\) - \(x_{3} = -\frac{11 + x_{2}}{4}\) Where \(x_{2}\) is a free variable. Thus, the system has infinitely many solutions depending on the value of \(x_{2}\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Para determinar el orden del sistema y clasificar la solución, primero reunimos todas las ecuaciones. Cada ecuación nos aporta un aspecto diferente sobre las variables \(x_1\), \(x_2\), y \(x_3\). Tras analizarlas, encontramos que el sistema tiene un orden de 5, ya que hay 5 ecuaciones. Las variables se pueden clasificar en variables libres y pivotales: las variables pivotales son \(x_1\), \(y\), y \(z\), ya que están relacionadas por las ecuaciones, mientras que las variables libres son \(x_2\) y \(x_3\). Ahora, para resolver el sistema, realizamos la eliminación de Gauss. Escribimos el sistema en forma de matriz aumentada y aplicamos operaciones fila. Se busca simplificar las filas hasta conseguir una matriz en forma escalonada. Al final, se obtiene un sistema donde se pueden determinar los valores de las variables pivotales en función de las variables libres, proporcionando así las soluciones generales del sistema. ¡Listo! Ahora puedes aplicar el método de eliminación de Gauss para resolver el sistema, y podrás ver cómo se van formando las relaciones tanto para las variables libres como para las pivotales. ¡Es como un juego de rompecabezas matemático!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad