Responder
The first system has no solution, while the second system has infinitely many solutions where \(x_{1} = \frac{3x_{2}}{4} + \frac{1}{4}\) and \(x_{3} = -\frac{11 + x_{2}}{4}\), with \(x_{2}\) being a free variable.
Solución
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}8x_{1}-6x_{2}-2=0\\x_{1}-x_{2}-x_{3}=3\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}8x_{1}-6x_{2}-2=0\\x_{1}=3+x_{2}+x_{3}\end{array}\right.\)
- step2: Substitute the value of \(x_{1}:\)
\(8\left(3+x_{2}+x_{3}\right)-6x_{2}-2=0\)
- step3: Simplify:
\(22+2x_{2}+8x_{3}=0\)
- step4: Evaluate:
\(22+8x_{3}+2x_{2}=0\)
- step5: Move the expression to the right side:
\(2x_{2}=0-\left(22+8x_{3}\right)\)
- step6: Subtract the terms:
\(2x_{2}=-22-8x_{3}\)
- step7: Divide both sides:
\(\frac{2x_{2}}{2}=\frac{-22-8x_{3}}{2}\)
- step8: Divide the numbers:
\(x_{2}=-11-4x_{3}\)
- step9: Substitute the value of \(x_{2}:\)
\(x_{1}=3-11-4x_{3}+x_{3}\)
- step10: Simplify:
\(x_{1}=-8-3x_{3}\)
- step11: Calculate:
\(\left(x_{1},x_{2},x_{3}\right) = \left(-8-3x_{3},-11-4x_{3},x_{3}\right),x_{3} \in \mathbb{R}\)
- step12: Alternative Form:
\(\textrm{Infinitely many solutions}\)
Solve the system of equations \( 4 x_{1}+3 x_{2}-x_{3}=4;3 x+9 y-3 z=0;y+z=1;-2 x-5 y+4 z=4;-2 x-6 y+3 z=4;-2 x+6 y-4 z=0;-x+3 y-z=0;5 x-15 y+10 z=0;x-3 y=0 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}4x_{1}+3x_{2}-x_{3}=4\\3x+9y-3z=0\\y+z=1\\-2x-5y+4z=4\\-2x-6y+3z=4\\-2x+6y-4z=0\\-x+3y-z=0\\5x-15y+10z=0\\x-3y=0\end{array}\right.\)
- step1: Rearrange the terms:
\(\left\{ \begin{array}{l}4x_{1}+3x_{2}-x_{3}=4\\3x+9y-3z=0\\y+z=1\\-2x-5y+4z=4\\-2x-6y+3z=4\\-2x+6y-4z=0\\-x+3y-z=0\\x-3y=0\end{array}\right.\)
- step2: Solve the equation:
\(\left\{ \begin{array}{l}x_{3}=-4+4x_{1}+3x_{2}\\3x+9y-3z=0\\y+z=1\\-2x-5y+4z=4\\-2x-6y+3z=4\\-2x+6y-4z=0\\-x+3y-z=0\\x-3y=0\end{array}\right.\)
- step3: Substitute the value of \(x_{3}:\)
\(\left\{ \begin{array}{l}3x+9y-3z=0\\y+z=1\\-2x-5y+4z=4\\-2x-6y+3z=4\\-2x+6y-4z=0\\-x+3y-z=0\\x-3y=0\end{array}\right.\)
- step4: Solve the equation:
\(\left\{ \begin{array}{l}3x+9y-3z=0\\y=1-z\\-2x-5y+4z=4\\-2x-6y+3z=4\\-2x+6y-4z=0\\-x+3y-z=0\\x-3y=0\end{array}\right.\)
- step5: Substitute the value of \(y:\)
\(\left\{ \begin{array}{l}3x+9\left(1-z\right)-3z=0\\-2x-5\left(1-z\right)+4z=4\\-2x-6\left(1-z\right)+3z=4\\-2x+6\left(1-z\right)-4z=0\\-x+3\left(1-z\right)-z=0\\x-3\left(1-z\right)=0\end{array}\right.\)
- step6: Simplify:
\(\left\{ \begin{array}{l}3x+9-12z=0\\-2x-5+9z=4\\-2x-6+9z=4\\-2x+6-10z=0\\-x+3-4z=0\\x-3+3z=0\end{array}\right.\)
- step7: Solve the equation:
\(\left\{ \begin{array}{l}3x+9-12z=0\\-2x-5+9z=4\\-2x-6+9z=4\\-2x+6-10z=0\\x=3-4z\\x-3+3z=0\end{array}\right.\)
- step8: Substitute the value of \(x:\)
\(\left\{ \begin{array}{l}3\left(3-4z\right)+9-12z=0\\-2\left(3-4z\right)-5+9z=4\\-2\left(3-4z\right)-6+9z=4\\-2\left(3-4z\right)+6-10z=0\\3-4z-3+3z=0\end{array}\right.\)
- step9: Simplify:
\(\left\{ \begin{array}{l}18-24z=0\\-11+17z=4\\-12+17z=4\\-2z=0\\-z=0\end{array}\right.\)
- step10: Simplify the expression:
\(\left\{ \begin{array}{l}18-24z=0\\-11+17z=4\\-12+17z=4\\-2z=0\end{array}\right.\)
- step11: Solve the equation:
\(\left\{ \begin{array}{l}z=\frac{3}{4}\\-11+17z=4\\-12+17z=4\\-2z=0\end{array}\right.\)
- step12: Substitute the value of \(z:\)
\(\left\{ \begin{array}{l}-11+17\times \frac{3}{4}=4\\-12+17\times \frac{3}{4}=4\\-2\times \frac{3}{4}=0\end{array}\right.\)
- step13: Simplify:
\(\left\{ \begin{array}{l}\frac{7}{4}=4\\\frac{3}{4}=4\\-\frac{3}{2}=0\end{array}\right.\)
- step14: Calculate:
\(\left\{ \begin{array}{l}x \in \varnothing \\x_{1} \in \varnothing \\x_{2} \in \varnothing \\x_{3} \in \varnothing \\y \in \varnothing \\z \in \varnothing \end{array}\right.\)
- step15: Rewrite:
\((x, x_{1}, x_{2}, x_{3}, y, z) \in \varnothing\)
To solve the given problem, we will analyze the systems of equations step by step.
### Step 1: Analyze the Systems
#### System 1:
1. \(4 x_{1}+3 x_{2}-x_{3}=4\)
2. \(3 x+9 y-3 z=0\)
3. \(y+z=1\)
4. \(-2 x-5 y+4 z=4\)
5. \(-2 x-6 y+3 z=4\)
6. \(-2 x+6 y-4 z=0\)
7. \(-x+3 y-z=0\)
8. \(5 x-15 y+10 z=0\)
9. \(x-3 y=0\)
#### System 2:
1. \(8 x_{1}-6 x_{2}-2=0\)
2. \(x_{1}-x_{2}-x_{3}=3\)
### Step 2: Determine the Order and Type of Solution
#### System 1:
- The first system has 8 equations and 6 variables \((x, x_{1}, x_{2}, x_{3}, y, z)\).
- The result indicates that there is **no solution** for this system.
#### System 2:
- The second system has 2 equations and 3 variables \((x_{1}, x_{2}, x_{3})\).
- The result indicates that there are **infinitely many solutions** for this system.
### Step 3: Identify Free and Pivotal Variables
#### System 1:
- Since there is no solution, we cannot identify free or pivotal variables.
#### System 2:
- In the second system, we have 2 equations and 3 variables, which implies that one variable will be free.
- We can express one variable in terms of the others, leading to infinitely many solutions.
### Step 4: Solve System 2
Now, let's solve the second system using the equations:
1. \(8 x_{1}-6 x_{2}-2=0\)
2. \(x_{1}-x_{2}-x_{3}=3\)
We can express \(x_{1}\) in terms of \(x_{2}\) from the first equation:
\[
8 x_{1} = 6 x_{2} + 2 \implies x_{1} = \frac{6 x_{2} + 2}{8} = \frac{3 x_{2}}{4} + \frac{1}{4}
\]
Substituting \(x_{1}\) into the second equation:
\[
\frac{3 x_{2}}{4} + \frac{1}{4} - x_{2} - x_{3} = 3
\]
\[
\frac{3 x_{2}}{4} - \frac{4 x_{2}}{4} - x_{3} + \frac{1}{4} = 3
\]
\[
-\frac{x_{2}}{4} - x_{3} + \frac{1}{4} = 3
\]
\[
-x_{3} = 3 + \frac{x_{2}}{4} - \frac{1}{4}
\]
\[
-x_{3} = \frac{12}{4} + \frac{x_{2}}{4} - \frac{1}{4} = \frac{11 + x_{2}}{4}
\]
\[
x_{3} = -\frac{11 + x_{2}}{4}
\]
### Final Solution for System 2
The solutions can be expressed as:
- \(x_{1} = \frac{3 x_{2}}{4} + \frac{1}{4}\)
- \(x_{3} = -\frac{11 + x_{2}}{4}\)
Where \(x_{2}\) is a free variable. Thus, the system has infinitely many solutions depending on the value of \(x_{2}\).
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución