5.1 If \( 3 \sin \beta=2 \). and \( \cos \beta<0 \), determine use of a calculator, the value of: 5.1.1 \( 3 \cos ^{2} \beta-1 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To solve the equation \( 3 \sin \beta = 2 \), we first find \( \sin \beta \) by dividing both sides by 3, yielding \( \sin \beta = \frac{2}{3} \). Now, since \( \cos \beta < 0 \), we are considering the second quadrant because sine is positive and cosine is negative there. Next, we use the Pythagorean identity \( \sin^2 \beta + \cos^2 \beta = 1 \) to find \( \cos \beta \): \[ \sin^2 \beta = \left(\frac{2}{3}\right)^2 = \frac{4}{9} \] Then, \[ \cos^2 \beta = 1 - \sin^2 \beta = 1 - \frac{4}{9} = \frac{5}{9} \] Since we need \( \cos \beta < 0 \), we take the negative square root: \[ \cos \beta = -\sqrt{\frac{5}{9}} = -\frac{\sqrt{5}}{3} \] Now we can compute \( 3 \cos^2 \beta - 1 \): \[ 3 \cos^2 \beta = 3 \left(\frac{5}{9}\right) = \frac{15}{9} = \frac{5}{3} \] Finally, we find: \[ 3 \cos^2 \beta - 1 = \frac{5}{3} - 1 = \frac{5}{3} - \frac{3}{3} = \frac{2}{3} \] So, the value of \( 3 \cos^2 \beta - 1 \) is \( \frac{2}{3} \).
