Pregunta
upstudy study bank question image url

81. STOCK The price per share of a coffee chain's stock was \( \$ 0.93 \) in a month during its first year of trading. During its fifth year of trading, the price per share of stock was \( \$ 3.52 \) during the same month. (Example 9) a. Write a continuous exponential equation to model the price of stock \( P \) as a function of year of trading \( t \). Round \( k \) to the nearest ten-thousandth. b. Use the model you found in part a to predict the price of the stock during the ninth year of trading.

Ask by Brewer Lawson. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. The continuous exponential equation modeling the stock price \( P \) as a function of year \( t \) is: \[ P = 0.93 \times e^{0.2662t} \] b. Predicted stock price during the ninth year of trading is approximately \$10.21.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Mind Expander

To create a continuous exponential equation for the stock price \( P \) as a function of the year of trading \( t \), we start with the general formula: \[ P(t) = P_0 \cdot e^{kt} \] Where \( P_0 \) is the initial price, \( k \) is the growth rate, and \( t \) is the number of years since trading began. ### a. Finding \( P_0 \) and \( k \) Given: - In the first year (\( t=1 \)), \( P(1) = 0.93 \) - In the fifth year (\( t=5 \)), \( P(5) = 3.52 \) From \( P(1) \): \[ P(1) = P_0 \cdot e^{k \cdot 1} = P_0 e^{k} = 0.93 \] From \( P(5) \): \[ P(5) = P_0 \cdot e^{k \cdot 5} = P_0 e^{5k} = 3.52 \] Now we can divide the equations to solve for \( k \): \[ \frac{P_0 e^{5k}}{P_0 e^{k}} = \frac{3.52}{0.93} \] This simplifies to: \[ e^{4k} = \frac{3.52}{0.93} \approx 3.7828 \] Taking the natural logarithm of both sides: \[ 4k = \ln(3.7828) \] \[ k \approx \frac{\ln(3.7828)}{4} \approx 0.3355 \] Now substituting \( k \) back to find \( P_0 \): \[ 0.93 = P_0 e^{0.3355} \] \[ P_0 \approx \frac{0.93}{1.3993} \approx 0.6653 \] So the continuous exponential equation is: \[ P(t) = 0.6653 \cdot e^{0.3355t} \] ### b. Predicting the stock price in the ninth year Now, to find the predicted price of stock during the ninth year of trading (\( t=9 \)): \[ P(9) = 0.6653 \cdot e^{0.3355 \cdot 9} \] \[ P(9) \approx 0.6653 \cdot e^{3.0195} \] \[ P(9) \approx 0.6653 \cdot 20.3264 \approx 13.5253 \] Thus, the predicted price of the stock during the ninth year of trading is approximately **$13.53**. And there you have it! A dive into the ups and downs of stock pricing with a sprinkle of math magic!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad