Pregunta
upstudy study bank question image url

Applicatian 1) \( \lim _{x \rightarrow 0^{+}} 3 x+7+\frac{1}{\sqrt{x}} \) 2) \( \lim _{x \rightarrow-\infty}\left(-3+\frac{1}{x}\right)\left(1+\frac{2}{x}\right) \) 3) \( \underset{\left.x \rightarrow-\infty \frac{1+\frac{4}{x^{3}}}{2-x^{5}} \quad 4\right) \frac{\ln }{x \rightarrow+\infty} \frac{\sqrt{x^{2}+5 x-3}}{x}}{x} \) \( \lim _{x \rightarrow+\infty} \sqrt{4 x^{2}-x+3}-2 x+1 \) 6) \( \lim _{x \rightarrow-\infty} \sqrt{x^{2}+x}+x \)

Ask by Byrd Macdonald. in Morocco
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Les limites sont : 1) \( +\infty \) 2) \( -3 \) 3) \( 0 \) 4) \( 0 \) 5) \( \frac{3}{4} \) 6) \( -\frac{1}{2} \)

Solución

Evaluate the limit by following steps: - step0: Evaluate the limit: \(\lim _{x\rightarrow 0^{+}}\left(3x+7+\frac{1}{\sqrt{x}}\right)\) - step1: Rewrite the expression: \(\lim _{x\rightarrow 0^{+}}\left(3x\right)+\lim _{x\rightarrow 0^{+}}\left(7\right)+\lim _{x\rightarrow 0^{+}}\left(\frac{1}{\sqrt{x}}\right)\) - step2: Calculate: \(0+7+\left(+\infty\right)\) - step3: Calculate: \(7+\left(+\infty\right)\) - step4: Calculate: \(+\infty\) Calculate the limit \( \lim_{x \rightarrow -\infty} \frac{1 + \frac{4}{x^{3}}}{2 - x^{5}} \). Evaluate the limit by following steps: - step0: Evaluate the limit: \(\lim _{x\rightarrow -\infty}\left(\frac{1+\frac{4}{x^{3}}}{2-x^{5}}\right)\) - step1: Rewrite the expression: \(\frac{\lim _{x\rightarrow -\infty}\left(1+\frac{4}{x^{3}}\right)}{\lim _{x\rightarrow -\infty}\left(2-x^{5}\right)}\) - step2: Calculate: \(\frac{1}{\lim _{x\rightarrow -\infty}\left(2-x^{5}\right)}\) - step3: Calculate: \(\frac{1}{+\infty}\) - step4: Calculate: \(0\) Calculate the limit \( \lim_{x \rightarrow +\infty} \frac{\ln x}{x} \). Evaluate the limit by following steps: - step0: Evaluate using L'Hopital's rule: \(\lim _{x\rightarrow +\infty}\left(\frac{\ln{\left(x\right)}}{x}\right)\) - step1: Use the L'Hopital's rule: \(\lim _{x\rightarrow +\infty}\left(\frac{\frac{d}{dx}\left(\ln{\left(x\right)}\right)}{\frac{d}{dx}\left(x\right)}\right)\) - step2: Find the derivative: \(\lim _{x\rightarrow +\infty}\left(\frac{\frac{1}{x}}{1}\right)\) - step3: Simplify the expression: \(\lim _{x\rightarrow +\infty}\left(\frac{1}{x}\right)\) - step4: Rewrite the expression: \(\frac{1}{\lim _{x\rightarrow +\infty}\left(x\right)}\) - step5: Calculate: \(\frac{1}{+\infty}\) - step6: Divide the terms: \(0\) Calculate the limit \( \lim_{x \rightarrow -\infty} \left(\sqrt{x^{2} + x} + x\right) \). Evaluate the limit by following steps: - step0: Evaluate using transformations: \(\lim _{x\rightarrow -\infty}\left(\sqrt{x^{2}+x}+x\right)\) - step1: Multiply by the Conjugate: \(\lim _{x\rightarrow -\infty}\left(\frac{x}{\sqrt{x^{2}+x}-x}\right)\) - step2: Rearrange the terms: \(\lim _{x\rightarrow -\infty}\left(\frac{1\times x}{\left(-\sqrt{1+\frac{1}{x}}-1\right)x}\right)\) - step3: Reduce the fraction: \(\lim _{x\rightarrow -\infty}\left(\frac{1}{-\sqrt{1+\frac{1}{x}}-1}\right)\) - step4: Rewrite the expression: \(\frac{\lim _{x\rightarrow -\infty}\left(1\right)}{\lim _{x\rightarrow -\infty}\left(-\sqrt{1+\frac{1}{x}}-1\right)}\) - step5: Evaluate: \(\frac{1}{\lim _{x\rightarrow -\infty}\left(-\sqrt{1+\frac{1}{x}}-1\right)}\) - step6: Evaluate: \(\frac{1}{-2}\) - step7: Rewrite the fraction: \(-\frac{1}{2}\) Calculate the limit \( \lim_{x \rightarrow -\infty} \left(-3 + \frac{1}{x}\right)\left(1 + \frac{2}{x}\right) \). Evaluate the limit by following steps: - step0: Evaluate the limit: \(\lim _{x\rightarrow -\infty}\left(\left(-3+\frac{1}{x}\right)\left(1+\frac{2}{x}\right)\right)\) - step1: Rewrite the expression: \(\lim _{x\rightarrow -\infty}\left(-3+\frac{1}{x}\right)\times \lim _{x\rightarrow -\infty}\left(1+\frac{2}{x}\right)\) - step2: Calculate: \(-3\times 1\) - step3: Multiply: \(-3\) Calculate the limit \( \lim_{x \rightarrow +\infty} \left(\sqrt{4x^{2} - x + 3} - 2x + 1\right) \). Evaluate the limit by following steps: - step0: Evaluate using transformations: \(\lim _{x\rightarrow +\infty}\left(\sqrt{4x^{2}-x+3}-2x+1\right)\) - step1: Multiply by the Conjugate: \(\lim _{x\rightarrow +\infty}\left(\frac{3x+2}{\sqrt{4x^{2}-x+3}+2x-1}\right)\) - step2: Rearrange the terms: \(\lim _{x\rightarrow +\infty}\left(\frac{\left(3+\frac{2}{x}\right)x}{\left(\sqrt{4-\frac{1}{x}+\frac{3}{x^{2}}}+2-\frac{1}{x}\right)x}\right)\) - step3: Reduce the fraction: \(\lim _{x\rightarrow +\infty}\left(\frac{3+\frac{2}{x}}{\sqrt{4-\frac{1}{x}+\frac{3}{x^{2}}}+2-\frac{1}{x}}\right)\) - step4: Rewrite the expression: \(\frac{\lim _{x\rightarrow +\infty}\left(3+\frac{2}{x}\right)}{\lim _{x\rightarrow +\infty}\left(\sqrt{4-\frac{1}{x}+\frac{3}{x^{2}}}+2-\frac{1}{x}\right)}\) - step5: Evaluate: \(\frac{3}{\lim _{x\rightarrow +\infty}\left(\sqrt{4-\frac{1}{x}+\frac{3}{x^{2}}}+2-\frac{1}{x}\right)}\) - step6: Evaluate: \(\frac{3}{4}\) Voici les résultats des limites demandées : 1) \( \lim _{x \rightarrow 0^{+}} \left(3x + 7 + \frac{1}{\sqrt{x}}\right) = +\infty \) 2) \( \lim _{x \rightarrow -\infty} \left(-3 + \frac{1}{x}\right)\left(1 + \frac{2}{x}\right) = -3 \) 3) \( \lim _{x \rightarrow -\infty} \frac{1 + \frac{4}{x^{3}}}{2 - x^{5}} = 0 \) 4) \( \lim _{x \rightarrow +\infty} \frac{\ln x}{x} = 0 \) 5) \( \lim _{x \rightarrow +\infty} \left(\sqrt{4x^{2} - x + 3} - 2x + 1\right) = \frac{3}{4} \) 6) \( \lim _{x \rightarrow -\infty} \left(\sqrt{x^{2} + x} + x\right) = -\frac{1}{2} \) Si vous avez besoin d'explications supplémentaires sur l'un de ces résultats, n'hésitez pas à demander !

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

As you navigate through the land of limits, keep in mind that approaching a value can sometimes yield unexpected treasures! For the first limit, as \( x \) approaches \( 0^{+} \), notice how \( \frac{1}{\sqrt{x}} \) heads towards infinity while the other terms stay relatively calm. This means the overall limit dives straight into infinity—an important reminder that dominance of terms is key in limit evaluation! Moving on to real-world applications, limits play a pivotal role in various fields such as physics and economics. For example, in physics, understanding the limit of motion can help predict the behavior of objects nearing the speed of light, using calculus concepts. Similarly, in economics, limits can help analyze functions when evaluating marginal costs as production increases indefinitely—illustrating how powerful these mathematical tools are in analyzing and forecasting real-life scenarios!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad