Responder
Les limites sont :
1) \( +\infty \)
2) \( -3 \)
3) \( 0 \)
4) \( 0 \)
5) \( \frac{3}{4} \)
6) \( -\frac{1}{2} \)
Solución
Evaluate the limit by following steps:
- step0: Evaluate the limit:
\(\lim _{x\rightarrow 0^{+}}\left(3x+7+\frac{1}{\sqrt{x}}\right)\)
- step1: Rewrite the expression:
\(\lim _{x\rightarrow 0^{+}}\left(3x\right)+\lim _{x\rightarrow 0^{+}}\left(7\right)+\lim _{x\rightarrow 0^{+}}\left(\frac{1}{\sqrt{x}}\right)\)
- step2: Calculate:
\(0+7+\left(+\infty\right)\)
- step3: Calculate:
\(7+\left(+\infty\right)\)
- step4: Calculate:
\(+\infty\)
Calculate the limit \( \lim_{x \rightarrow -\infty} \frac{1 + \frac{4}{x^{3}}}{2 - x^{5}} \).
Evaluate the limit by following steps:
- step0: Evaluate the limit:
\(\lim _{x\rightarrow -\infty}\left(\frac{1+\frac{4}{x^{3}}}{2-x^{5}}\right)\)
- step1: Rewrite the expression:
\(\frac{\lim _{x\rightarrow -\infty}\left(1+\frac{4}{x^{3}}\right)}{\lim _{x\rightarrow -\infty}\left(2-x^{5}\right)}\)
- step2: Calculate:
\(\frac{1}{\lim _{x\rightarrow -\infty}\left(2-x^{5}\right)}\)
- step3: Calculate:
\(\frac{1}{+\infty}\)
- step4: Calculate:
\(0\)
Calculate the limit \( \lim_{x \rightarrow +\infty} \frac{\ln x}{x} \).
Evaluate the limit by following steps:
- step0: Evaluate using L'Hopital's rule:
\(\lim _{x\rightarrow +\infty}\left(\frac{\ln{\left(x\right)}}{x}\right)\)
- step1: Use the L'Hopital's rule:
\(\lim _{x\rightarrow +\infty}\left(\frac{\frac{d}{dx}\left(\ln{\left(x\right)}\right)}{\frac{d}{dx}\left(x\right)}\right)\)
- step2: Find the derivative:
\(\lim _{x\rightarrow +\infty}\left(\frac{\frac{1}{x}}{1}\right)\)
- step3: Simplify the expression:
\(\lim _{x\rightarrow +\infty}\left(\frac{1}{x}\right)\)
- step4: Rewrite the expression:
\(\frac{1}{\lim _{x\rightarrow +\infty}\left(x\right)}\)
- step5: Calculate:
\(\frac{1}{+\infty}\)
- step6: Divide the terms:
\(0\)
Calculate the limit \( \lim_{x \rightarrow -\infty} \left(\sqrt{x^{2} + x} + x\right) \).
Evaluate the limit by following steps:
- step0: Evaluate using transformations:
\(\lim _{x\rightarrow -\infty}\left(\sqrt{x^{2}+x}+x\right)\)
- step1: Multiply by the Conjugate:
\(\lim _{x\rightarrow -\infty}\left(\frac{x}{\sqrt{x^{2}+x}-x}\right)\)
- step2: Rearrange the terms:
\(\lim _{x\rightarrow -\infty}\left(\frac{1\times x}{\left(-\sqrt{1+\frac{1}{x}}-1\right)x}\right)\)
- step3: Reduce the fraction:
\(\lim _{x\rightarrow -\infty}\left(\frac{1}{-\sqrt{1+\frac{1}{x}}-1}\right)\)
- step4: Rewrite the expression:
\(\frac{\lim _{x\rightarrow -\infty}\left(1\right)}{\lim _{x\rightarrow -\infty}\left(-\sqrt{1+\frac{1}{x}}-1\right)}\)
- step5: Evaluate:
\(\frac{1}{\lim _{x\rightarrow -\infty}\left(-\sqrt{1+\frac{1}{x}}-1\right)}\)
- step6: Evaluate:
\(\frac{1}{-2}\)
- step7: Rewrite the fraction:
\(-\frac{1}{2}\)
Calculate the limit \( \lim_{x \rightarrow -\infty} \left(-3 + \frac{1}{x}\right)\left(1 + \frac{2}{x}\right) \).
Evaluate the limit by following steps:
- step0: Evaluate the limit:
\(\lim _{x\rightarrow -\infty}\left(\left(-3+\frac{1}{x}\right)\left(1+\frac{2}{x}\right)\right)\)
- step1: Rewrite the expression:
\(\lim _{x\rightarrow -\infty}\left(-3+\frac{1}{x}\right)\times \lim _{x\rightarrow -\infty}\left(1+\frac{2}{x}\right)\)
- step2: Calculate:
\(-3\times 1\)
- step3: Multiply:
\(-3\)
Calculate the limit \( \lim_{x \rightarrow +\infty} \left(\sqrt{4x^{2} - x + 3} - 2x + 1\right) \).
Evaluate the limit by following steps:
- step0: Evaluate using transformations:
\(\lim _{x\rightarrow +\infty}\left(\sqrt{4x^{2}-x+3}-2x+1\right)\)
- step1: Multiply by the Conjugate:
\(\lim _{x\rightarrow +\infty}\left(\frac{3x+2}{\sqrt{4x^{2}-x+3}+2x-1}\right)\)
- step2: Rearrange the terms:
\(\lim _{x\rightarrow +\infty}\left(\frac{\left(3+\frac{2}{x}\right)x}{\left(\sqrt{4-\frac{1}{x}+\frac{3}{x^{2}}}+2-\frac{1}{x}\right)x}\right)\)
- step3: Reduce the fraction:
\(\lim _{x\rightarrow +\infty}\left(\frac{3+\frac{2}{x}}{\sqrt{4-\frac{1}{x}+\frac{3}{x^{2}}}+2-\frac{1}{x}}\right)\)
- step4: Rewrite the expression:
\(\frac{\lim _{x\rightarrow +\infty}\left(3+\frac{2}{x}\right)}{\lim _{x\rightarrow +\infty}\left(\sqrt{4-\frac{1}{x}+\frac{3}{x^{2}}}+2-\frac{1}{x}\right)}\)
- step5: Evaluate:
\(\frac{3}{\lim _{x\rightarrow +\infty}\left(\sqrt{4-\frac{1}{x}+\frac{3}{x^{2}}}+2-\frac{1}{x}\right)}\)
- step6: Evaluate:
\(\frac{3}{4}\)
Voici les résultats des limites demandées :
1) \( \lim _{x \rightarrow 0^{+}} \left(3x + 7 + \frac{1}{\sqrt{x}}\right) = +\infty \)
2) \( \lim _{x \rightarrow -\infty} \left(-3 + \frac{1}{x}\right)\left(1 + \frac{2}{x}\right) = -3 \)
3) \( \lim _{x \rightarrow -\infty} \frac{1 + \frac{4}{x^{3}}}{2 - x^{5}} = 0 \)
4) \( \lim _{x \rightarrow +\infty} \frac{\ln x}{x} = 0 \)
5) \( \lim _{x \rightarrow +\infty} \left(\sqrt{4x^{2} - x + 3} - 2x + 1\right) = \frac{3}{4} \)
6) \( \lim _{x \rightarrow -\infty} \left(\sqrt{x^{2} + x} + x\right) = -\frac{1}{2} \)
Si vous avez besoin d'explications supplémentaires sur l'un de ces résultats, n'hésitez pas à demander !
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución