Pregunta
upstudy study bank question image url

A scientist estmates that the mean riftrogen dioxide level in a city is greater than 34 parts per billion. To tast this esimate, you determine the nifrogen dioxide \( \quad 233644194331442835 \quad 2742 \) kevels for 31 rardomily selected days. The results (in parls per billion) are listed \( 193135352834243728 \quad 15 \quad 39 \) to the right Assume that the population standard deviation is 8. At \( \alpha=0.14 \), can 243436351415153221 you surport the scientist's estimate? Complete parts (a) through (e). (a) Whe the clain mathematically and idenitfy \( \mathrm{H}_{0} \) and \( \mathrm{H}_{3} \). Choose from the following. A. \( \mathrm{H}_{3} \) : \( 1<34 \) B. \( H_{0}-\mu=34 \) \( \mathrm{H}_{\mathrm{a}} \cdot \mu \geq 36 \) (claim) \( \mathrm{H}_{\mathrm{a}} \) : \( \mu>34 \) (claim) D. Hio p \( \geq 3 \). (claim) E \( H_{0}: \mu \leq 34 \) \( H_{2}, \underline{y}<34 \) Ha. \( \mu>34 \) (claim) C. \( \mathrm{H}_{0}: \mu \leq 34 \) (claim) \( \mathrm{H}_{\mathrm{a}} \mu>34 \) F. \( \mathrm{H}_{0}-\mu=34 \) (claim) \( \mathrm{H}_{\mathrm{a}}: \mu>34 \) (a) Frid the crical velue and identity the rejection region. \[ z_{2}=108 \text { (Found to two decmal places as needed.) } \] Rajection regun \( z \) \( \square \) 108 (c) Find the standardized test statisic. \( z= \) \( \square \) (Pand io iwd decmal places as needed)

Ask by Joseph Weaver. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The null hypothesis (\( H_0 \)) is that the mean nitrogen dioxide level is less than or equal to 34 parts per billion (\( \mu \leq 34 \)), and the alternative hypothesis (\( H_a \)) is that the mean nitrogen dioxide level is greater than 34 parts per billion (\( \mu > 34 \)). (b) The critical value is \( z = 2.33 \). The rejection region is \( z > 2.33 \). (c) The standardized test statistic is approximately \( z = 1.63 \).

Solución

To determine if the scientist's estimate can be supported, we need to perform a hypothesis test. Given: - The mean nitrogen dioxide level in the city is greater than 34 parts per billion. - The population standard deviation is 8. - The sample size is 31. - The results of the 31 randomly selected days are listed. - The significance level is \( \alpha = 0.01 \). (a) Mathematically, the claim is that the mean nitrogen dioxide level in the city is greater than 34 parts per billion. Therefore, the null hypothesis (\( H_0 \)) is that the mean nitrogen dioxide level is less than or equal to 34 parts per billion, and the alternative hypothesis (\( H_a \)) is that the mean nitrogen dioxide level is greater than 34 parts per billion. The correct choice is: B. \( H_0: \mu \leq 34 \) (claim) \( H_a: \mu > 34 \) (claim) (b) To find the critical value, we need to determine the z-score corresponding to the given significance level (\( \alpha = 0.01 \)). The critical value is \( z_{\alpha} = 2.33 \) (found to two decimal places as needed). The rejection region is \( z > 2.33 \). (c) To find the standardized test statistic, we need to calculate the z-score using the sample mean, population standard deviation, and sample size. The sample mean is \( \bar{x} = 233644194331442835 \) (given). The population standard deviation is \( \sigma = 8 \) (given). The sample size is \( n = 31 \) (given). The z-score is calculated as: \[ z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \] Substitute the values into the formula to find the z-score. The standardized test statistic is approximately \( z \approx 1.626095 \times 10^{17} \) (found to two decimal places as needed).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's break it down! The fascinating journey of nitrogen dioxide (NO₂) levels traces back to the industrial revolution when urbanization significantly increased air pollution. Scientists have been closely monitoring NO₂ levels due to their impact on air quality and health. Research highlights how exposure to high levels can lead to respiratory issues, making it crucial for cities to keep track of these measurements and take appropriate actions to maintain public health. In the real world, this situation has major implications for environmental policies and public health initiatives. Cities with significant industrial activity or heavy traffic often have elevated nitrogen dioxide levels. By conducting tests and comparing them against thresholds (like the suspected mean of 34 parts per billion), scientists can advocate for stricter emission regulations or alert communities about poor air quality days, ultimately working toward healthier environments for everyone.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad