Responder
The solutions are \( (x, y) = (-1, 1) \) and \( (x, y) = (-3, -1) \).
Solución
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x^{2}-2xy-3y^{2}=0\\y-x=2\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x^{2}-2xy-3y^{2}=0\\x=-2+y\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(\left(-2+y\right)^{2}-2\left(-2+y\right)y-3y^{2}=0\)
- step3: Simplify:
\(4-4y^{2}=0\)
- step4: Move the constant to the right side:
\(-4y^{2}=0-4\)
- step5: Remove 0:
\(-4y^{2}=-4\)
- step6: Change the signs:
\(4y^{2}=4\)
- step7: Divide both sides:
\(\frac{4y^{2}}{4}=\frac{4}{4}\)
- step8: Divide the numbers:
\(y^{2}=1\)
- step9: Simplify the expression:
\(y=\pm \sqrt{1}\)
- step10: Simplify:
\(y=\pm 1\)
- step11: Separate into possible cases:
\(y=1\cup y=-1\)
- step12: Rearrange the terms:
\(\left\{ \begin{array}{l}x=-2+y\\y=1\end{array}\right.\cup \left\{ \begin{array}{l}x=-2+y\\y=-1\end{array}\right.\)
- step13: Calculate:
\(\left\{ \begin{array}{l}x=-1\\y=1\end{array}\right.\cup \left\{ \begin{array}{l}x=-3\\y=-1\end{array}\right.\)
- step14: Check the solution:
\(\left\{ \begin{array}{l}x=-1\\y=1\end{array}\right.\cup \left\{ \begin{array}{l}x=-3\\y=-1\end{array}\right.\)
- step15: Rewrite:
\(\left(x,y\right) = \left(-1,1\right)\cup \left(x,y\right) = \left(-3,-1\right)\)
To solve the system of equations given by:
1. \( x^{2} - 2xy - 3y^{2} = 0 \)
2. \( y - x = 2 \)
we can find the solutions step by step.
### Step 1: Substitute \( y \) from the second equation into the first equation.
From the second equation, we can express \( y \) in terms of \( x \):
\[
y = x + 2
\]
### Step 2: Substitute \( y \) into the first equation.
Now, substitute \( y = x + 2 \) into the first equation:
\[
x^{2} - 2x(x + 2) - 3(x + 2)^{2} = 0
\]
### Step 3: Expand and simplify the equation.
Expanding the equation:
\[
x^{2} - 2x^{2} - 4x - 3(x^{2} + 4x + 4) = 0
\]
This simplifies to:
\[
x^{2} - 2x^{2} - 4x - 3x^{2} - 12x - 12 = 0
\]
Combining like terms:
\[
-4x^{2} - 16x - 12 = 0
\]
### Step 4: Multiply through by -1 to simplify.
\[
4x^{2} + 16x + 12 = 0
\]
### Step 5: Divide the entire equation by 4.
\[
x^{2} + 4x + 3 = 0
\]
### Step 6: Factor the quadratic equation.
Factoring gives:
\[
(x + 1)(x + 3) = 0
\]
### Step 7: Solve for \( x \).
Setting each factor to zero gives:
\[
x + 1 = 0 \quad \Rightarrow \quad x = -1
\]
\[
x + 3 = 0 \quad \Rightarrow \quad x = -3
\]
### Step 8: Find corresponding \( y \) values.
Using \( y = x + 2 \):
1. For \( x = -1 \):
\[
y = -1 + 2 = 1
\]
2. For \( x = -3 \):
\[
y = -3 + 2 = -1
\]
### Final Solutions
The solutions to the system of equations are:
\[
(x, y) = (-1, 1) \quad \text{and} \quad (x, y) = (-3, -1)
\]
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución