Solve this system algebraically. \( \begin{array}{l}9 x+2 y=5 \\ y-2 x+3=0 \\ \\ \{(-11 / 13,17 / 13)\} \\ \{(-11 / 13,-17 / 13)\} \\ \{(11 / 13,17 / 13)\} \\ \{(11 / 13,-17 / 13)\}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To solve the system algebraically, let's start with the given equations: 1. \( 9x + 2y = 5 \) 2. \( y - 2x + 3 = 0 \) which can be rewritten as \( y = 2x - 3 \). Now, we can substitute \( y \) from the second equation into the first equation: \( 9x + 2(2x - 3) = 5 \) \( 9x + 4x - 6 = 5 \) Combining like terms: \( 13x - 6 = 5 \) Adding 6 to both sides: \( 13x = 11 \) Dividing by 13: \( x = \frac{11}{13} \). Now, substitute \( x \) back into \( y = 2x - 3 \): \( y = 2\left(\frac{11}{13}\right) - 3 \) \( y = \frac{22}{13} - \frac{39}{13} \) \( y = -\frac{17}{13} \). Thus, the solution to the system is: \[ \left( \frac{11}{13}, -\frac{17}{13} \right). \] So, from the provided options, the correct answer would be \( \{(11 / 13, -17 / 13)\} \).
