Pregunta
upstudy study bank question image url

Yun wants to build a one-sample \( z \) interval with \( 82 \% \) confidence to estimate what proportion of users will click an advertisement that appears on his website. He takes a random sample of 200 users and finds that 34 of them clicked the advertisement. What critical value \( z^{*} \) should Yun use to construct this confidence interval? Choose 1 answer: (A) \( z^{*}=0.842 \) (B) \( z^{*}=0.915 \) (C) \( z^{*}=1.282 \) (D) \( z^{*}=1.341 \) ( 1.31

Ask by Higgins Stuart. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Yun should use \( z^{*} = 1.341 \) to construct the 82% confidence interval.

Solución

For an 82% confidence interval, the total probability in the tails is 1 - 0.82 = 0.18, so there is 0.09 in each tail. The critical value, z*, is the z-score such that the cumulative probability is 1 - 0.09 = 0.91. Looking up or computing the z-score that gives a cumulative probability of 0.91, we find z* ≈ 1.341. Thus, the correct answer is: (D) z* = 1.341.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the critical value \( z^{*} \) for an 82% confidence interval, we need to determine the z-scores that correspond to the tails of the normal distribution. Since the confidence level is 82%, the area in the tails combined is 1 - 0.82 = 0.18. Thus, each tail will have an area of 0.09. Using the standard normal distribution table or calculator, we look for the z-score that corresponds to an area of 0.09 in the left tail, which leaves an area of 0.91 in the right tail. The corresponding z-score for 0.91 is approximately 1.341. So, the critical value \( z^{*} \) that Yun should use is \( 1.341 \). Now let's check for the potential common mistakes. One such mistake when calculating a critical value is forgetting to account for both tails when determining the area for the confidence interval. It’s essential to split the remaining area evenly between the two tails to identify the proper z-score correctly. It's also easy to confuse the area covered by the confidence level with total area, leading to erroneous conclusions!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad