Pregunta
upstudy study bank question image url

Quations You invested \( \$ 21,000 \) in two accounts paying \( 2 \% \) and \( 5 \% \) annual interest, respectively. If the total interest earned for the year \( 60 \%, 9 \) of 15 points was \( \$ 810 \), how much was invested at each rate? The amount invested at \( 2 \% \) is \( \$ \square \).

Ask by Stanley Bowman. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

$8,000 was invested at 2%, and $13,000 was invested at 5%.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

To solve this problem, we first need to define variables for the amounts invested in each account. Let \( x \) be the amount invested at \( 2\% \) and \( 21000 - x \) be the amount invested at \( 5\% \). According to the problem, the total interest earned from both accounts is \( 810 \). We can set up the equation for the total interest: \[ 0.02x + 0.05(21000 - x) = 810 \] Now let's simplify and solve for \( x \): \[ 0.02x + 1050 - 0.05x = 810 \] Combining like terms gives: \[ -0.03x + 1050 = 810 \] Subtract \( 1050 \) from both sides: \[ -0.03x = -240 \] Now divide by \( -0.03 \): \[ x = 8000 \] Thus, the amount invested at \( 2\% \) is \( \$ 8,000 \). To find the amount invested at \( 5\% \), subtract \( 8,000 \) from \( 21,000 \): \[ 21000 - 8000 = 13000 \] Therefore, \( 13000 \) was invested at \( 5\% \). In conclusion, the amount invested at \( 2\% \) is \( \$ 8,000 \) and the amount invested at \( 5\% \) is \( \$ 13,000 \). For some added fun in finance: Did you know that the concept of interest dates back to ancient Mesopotamia? Sumerians began recording transactions that involved loans and interest rates as early as 3000 BC! They used a form of barley as currency! And if you're interested in how interest affects your savings, you might want to check out the "Rule of 72." This nifty math trick can help you estimate how long it will take for your investment to double at a specific interest rate. Just divide 72 by your annual interest rate, and voilà!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad