Pregunta
Carlos invests \( \$ 6,000 \) at \( 4 \% \) simple interest for 35 years. How much is in the account at the end of the 35 year period? Round your answer to the nearest cent. Answer: \( \$ \) Enter an integer or decimal number [more.]
Ask by Chambers Marsh. in the United States
Feb 27,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
Carlos will have \$14,400 in the account after 35 years.
Solución
Calculate or simplify the expression \( 6000*(1+0.04*35) \).
Calculate the value by following steps:
- step0: Calculate:
\(6000\left(1+0.04\times 35\right)\)
- step1: Multiply the numbers:
\(6000\left(1+1.4\right)\)
- step2: Add the numbers:
\(6000\times 2.4\)
- step3: Multiply the numbers:
\(14400\)
Carlos will have \( \$14400 \) in the account at the end of the 35 year period.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
To find the total amount in the account at the end of the investment period using simple interest, you can use the formula: \[ A = P + I \] where \( A \) is the total amount, \( P \) is the principal amount, and \( I \) is the interest earned. First, calculate the interest: \[ I = P \times r \times t \] \[ I = 6000 \times 0.04 \times 35 = 8400 \] Now, plug the interest back into the total amount formula: \[ A = 6000 + 8400 = 14400 \] Thus, the total amount in the account at the end of 35 years is \( \$14,400.00 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium