Pregunta
upstudy study bank question image url

\( g(x)=2 x+1 \quad x>1 \) \( h(x)=-x^{2}+1 \quad-1
Ask by Adkins Gross. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The range of the piecewise function is all real numbers less than 1 and greater than 3.

Solución

To find the range of the piecewise function defined by \( g(x) \) and \( h(x) \), we will analyze each function separately and then combine the results. 1. **Analyzing \( g(x) = 2x + 1 \) for \( x > 1 \)**: - As \( x \) approaches \( 1 \) from the right, \( g(1) = 2(1) + 1 = 3 \). - As \( x \) increases without bound, \( g(x) \) also increases without bound. - Therefore, the range of \( g(x) \) is \( (3, \infty) \). 2. **Analyzing \( h(x) = -x^2 + 1 \) for \( -1 < x < 1 \)**: - This is a downward-opening parabola with its vertex at \( (0, 1) \). - The maximum value occurs at \( x = 0 \), where \( h(0) = -0^2 + 1 = 1 \). - As \( x \) approaches \( -1 \) or \( 1 \), \( h(x) \) approaches \( -1 \) (since \( h(-1) = -(-1)^2 + 1 = 0 \) and \( h(1) = -(1)^2 + 1 = 0 \)). - Therefore, the range of \( h(x) \) is \( (-1, 1) \). 3. **Combining the ranges**: - The range of \( g(x) \) is \( (3, \infty) \). - The range of \( h(x) \) is \( (-1, 1) \). - Since there is no overlap between these two ranges, the overall range of the piecewise function is the union of the two ranges. Thus, the final range of the piecewise function is: \[ \text{Range} = (-1, 1) \cup (3, \infty) \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the range of the functions \( g(x) \) and \( h(x) \), we’ll analyze each function separately. For \( g(x) = 2x + 1 \) defined for \( x > 1 \): As \( x \) approaches 1 from the right, \( g(1) = 2(1) + 1 = 3 \). Since this is a linear function with a positive slope, it will continuously increase as \( x \) increases. Therefore, the range of \( g(x) \) is \( (3, \infty) \). For \( h(x) = -x^2 + 1 \) defined for \( -1 < x < 1 \): This is a downward-opening parabola. The vertex occurs at \( x = 0 \), giving \( h(0) = -0^2 + 1 = 1 \). At the endpoints, \( h(-1) = -(-1)^2 + 1 = 0 \) and \( h(1) = -1^2 + 1 = 0 \). Thus, the range of \( h(x) \) is \( (0, 1) \). Combining both ranges, the overall range of the piecewise function is \( (0, 1) \cup (3, \infty) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad