Pregunta
upstudy study bank question image url

Determine the location of each local extremum of the function. \( f(x)=x^{3}+3 x^{2}-9 x+1 \)

Ask by Boone Turner. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( f(x) = x^{3} + 3x^{2} - 9x + 1 \) has a local maximum at \( x = -3 \) with a value of 28 and a local minimum at \( x = 1 \) with a value of -4.

Solución

To find the local extrema of the function f(x) = x³ + 3x² − 9x + 1, we begin by finding its critical points. Step 1: Find the first derivative.   f′(x) = 3x² + 6x − 9 Step 2: Set the derivative equal to zero to find the critical points.   3x² + 6x − 9 = 0 Divide the equation by 3:   x² + 2x − 3 = 0 Step 3: Factor the quadratic equation.   x² + 2x − 3 = (x + 3)(x − 1) = 0 Solve for x:   x = −3 or x = 1 Step 4: Use the second derivative to determine the nature of each critical point. The second derivative is:   f″(x) = 6x + 6 Evaluate the second derivative at each critical point: • At x = −3:   f″(−3) = 6(−3) + 6 = −18 + 6 = −12 (< 0)   Since f″(−3) < 0, f has a local maximum at x = −3. • At x = 1:   f″(1) = 6(1) + 6 = 6 + 6 = 12 (> 0)   Since f″(1) > 0, f has a local minimum at x = 1. Step 5: Find the function values at these critical points. • At x = −3:   f(−3) = (−3)³ + 3(−3)² − 9(−3) + 1     = −27 + 27 + 27 + 1     = 28 • At x = 1:   f(1) = (1)³ + 3(1)² − 9(1) + 1     = 1 + 3 − 9 + 1     = −4 Final Answer: • Local maximum at (−3, 28) • Local minimum at (1, −4)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the local extrema of the function \( f(x) = x^3 + 3x^2 - 9x + 1 \), we start by calculating the first derivative: \[ f'(x) = 3x^2 + 6x - 9. \] Setting the first derivative to zero helps us find critical points: \[ 3x^2 + 6x - 9 = 0. \] Dividing the entire equation by 3, we get: \[ x^2 + 2x - 3 = 0. \] Factoring yields: \[ (x + 3)(x - 1) = 0, \] which gives us the critical points: \[ x = -3 \quad \text{and} \quad x = 1. \] Next, we find the second derivative to determine the nature of these critical points: \[ f''(x) = 6x + 6. \] Evaluating \( f''(x) \) at the critical points: 1. For \( x = -3 \): \[ f''(-3) = 6(-3) + 6 = -18 + 6 = -12 < 0, \] indicating a local maximum. 2. For \( x = 1 \): \[ f''(1) = 6(1) + 6 = 6 + 6 = 12 > 0, \] indicating a local minimum. Thus, the function has a local maximum at \( x = -3 \) and a local minimum at \( x = 1 \). To find the function values at these critical points: - At \( x = -3 \): \[ f(-3) = (-3)^3 + 3(-3)^2 - 9(-3) + 1 = -27 + 27 + 27 + 1 = 28. \] - At \( x = 1 \): \[ f(1) = (1)^3 + 3(1)^2 - 9(1) + 1 = 1 + 3 - 9 + 1 = -4. \] In conclusion, the local maximum occurs at \( (-3, 28) \) and the local minimum at \( (1, -4) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad