Two polynomials \( P \) and \( D \) are given. Use either synthetic or long division to divide \( P(x) \) by \( D(x) \), and express \( P \) in the form \( P(x)=D(x) \cdot Q(x)+R(x) \). \[ P(x)=4 x^{2}+3 x-1, \quad D(x)=x+5 \] \( P(x)=\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To divide \( P(x) = 4x^2 + 3x - 1 \) by \( D(x) = x + 5 \) using synthetic division, follow these steps: 1. Write down the coefficients of \( P(x) \): \( 4 \), \( 3 \), and \( -1 \). 2. Since we are using \( D(x) = x + 5 \), we will use \( -5 \) in synthetic division. - Set up synthetic division: ``` -5 | 4 3 -1 | -20 85 ----------------- 4 -17 84 ``` 3. The result gives us \( Q(x) = 4x - 17 \) and the remainder \( R(x) = 84 \). Putting it all together, we express \( P(x) \) as: \[ P(x) = D(x) \cdot Q(x) + R(x) \] which means: \[ P(x) = (x + 5)(4x - 17) + 84. \] So, in conclusion: \[ P(x) = (x + 5)(4x - 17) + 84. \]
