Pregunta
upstudy study bank question image url

Chapter 6 HW - The Normal Distribution Current 52/100 +Å Category: Homework \( \begin{array}{llllllllllllllllllllll}\text { (1) } & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 \\ 23 & 2\end{array} \) Current learning objective: Z -Scores Question 15 Practice similar questions Score: 0 of 2 points The most recent exam scores have a mean of 68 and a standard deviation of 5.8 The \( z \)-score of Reagan's test score is -1.8 . What is her test score? Enter your answer Round the answer to 2 decimal places.

Ask by Fitzgerald Delgado. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Reagan's test score is 57.56.

Solución

To find Reagan’s test score, use the formula for a z-score:   z = (X - μ) / σ where   X is the test score,   μ is the mean (68), and   σ is the standard deviation (5.8). Given z = -1.8, substitute the values into the formula:   -1.8 = (X - 68) / 5.8 Multiply both sides by 5.8 to solve for (X - 68):   -1.8 × 5.8 = X - 68   -10.44 = X - 68 Now, add 68 to both sides to solve for X:   X = 68 - 10.44   X = 57.56 Thus, Reagan’s test score is 57.56 (rounded to 2 decimal places).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find Reagan's test score using the \( z \)-score formula, you can rearrange the formula: \[ z = \frac{(X - \mu)}{\sigma} \] Where \( X \) is the test score, \( \mu \) is the mean, and \( \sigma \) is the standard deviation. Plugging in the values given: \[ -1.8 = \frac{(X - 68)}{5.8} \] Multiplying both sides by 5.8 gives: \[ -10.44 = X - 68 \] Adding 68 to both sides results in: \[ X = 57.56 \] So, Reagan's test score is approximately **57.56** when rounded to two decimal places! Fun fact: The concept of the normal distribution is so prevalent that it applies not just to test scores, but also to everything from heights to measurement errors! In many real-world situations, it helps us understand the likelihood of outcomes, making it a staple in statistics and data analysis. And here's a tip for using \( z \)-scores: always remember that a negative \( z \)-score indicates a value below the mean! It’s a classic mistake to misinterpret this; so take a moment to analyze the context before jumping to conclusions about the score.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad