Pregunta
upstudy study bank question image url

2.2. \( \ln (2 x)+\ln (3 x-e)-2=\ln 8 \)

Ask by Huang Schwartz. in South Africa
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( x = \frac{4e}{3} \)

Solución

Solve the equation \( \ln(2x)+\ln(3x-e)-2=\ln(8) \). Solve the equation by following steps: - step0: Solve for \(x\): \(\ln{\left(2x\right)}+\ln{\left(3x-e\right)}-2=\ln{\left(8\right)}\) - step1: Find the domain: \(\ln{\left(2x\right)}+\ln{\left(3x-e\right)}-2=\ln{\left(8\right)},x>\frac{e}{3}\) - step2: Transform the expression: \(\ln{\left(2x\left(3x-e\right)\right)}-2=\ln{\left(8\right)}\) - step3: Move the constant to the right side: \(\ln{\left(2x\left(3x-e\right)\right)}=\ln{\left(8\right)}+2\) - step4: Evaluate the logarithm: \(\ln{\left(2x\left(3x-e\right)\right)}=\ln{\left(8e^{2}\right)}\) - step5: Evaluate the logarithm: \(2x\left(3x-e\right)=8e^{2}\) - step6: Expand the expression: \(6x^{2}-2ex=8e^{2}\) - step7: Move the expression to the left side: \(6x^{2}-2ex-8e^{2}=0\) - step8: Solve using the quadratic formula: \(x=\frac{2e\pm \sqrt{\left(-2e\right)^{2}-4\times 6\left(-8e^{2}\right)}}{2\times 6}\) - step9: Simplify the expression: \(x=\frac{2e\pm \sqrt{\left(-2e\right)^{2}-4\times 6\left(-8e^{2}\right)}}{12}\) - step10: Simplify the expression: \(x=\frac{2e\pm \sqrt{196e^{2}}}{12}\) - step11: Simplify the expression: \(x=\frac{2e\pm 14e}{12}\) - step12: Separate into possible cases: \(\begin{align}&x=\frac{2e+14e}{12}\\&x=\frac{2e-14e}{12}\end{align}\) - step13: Simplify the expression: \(\begin{align}&x=\frac{4e}{3}\\&x=\frac{2e-14e}{12}\end{align}\) - step14: Simplify the expression: \(\begin{align}&x=\frac{4e}{3}\\&x=-e\end{align}\) - step15: Check if the solution is in the defined range: \(\begin{align}&x=\frac{4e}{3}\\&x=-e\end{align},x>\frac{e}{3}\) - step16: Find the intersection: \(x=\frac{4e}{3}\) The solution to the equation \( \ln (2x)+\ln (3x-e)-2=\ln 8 \) is \( x = \frac{4e}{3} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the equation \( \ln (2x) + \ln (3x - e) - 2 = \ln 8 \), we can start by simplifying the left side using the properties of logarithms. We know that \( \ln(a) + \ln(b) = \ln(ab) \), so we can combine the logarithmic terms: \[ \ln(2x(3x - e)) - 2 = \ln 8. \] Now, we can express the subtraction of 2 as a logarithm: \[ \ln(2x(3x - e)) - \ln(e^2) = \ln(8). \] Thus, we can rewrite the equation as: \[ \ln\left(\frac{2x(3x - e)}{e^2}\right) = \ln(8). \] Now, we can eliminate the logarithms by exponentiating both sides: \[ \frac{2x(3x - e)}{e^2} = 8. \] Multiplying both sides by \( e^2 \) gives: \[ 2x(3x - e) = 8e^2. \] Now we can simplify this: \[ 6x^2 - 2ex - 8e^2 = 0. \] This is a quadratic equation in the standard form \( ax^2 + bx + c = 0 \) with \( a = 6 \), \( b = -2e \), and \( c = -8e^2 \). We can apply the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) to find the values of \( x \). Now, let's calculate the discriminant: \[ b^2 - 4ac = (-2e)^2 - 4 \cdot 6 \cdot (-8e^2) = 4e^2 + 192e^2 = 196e^2. \] The square root of the discriminant is: \[ \sqrt{196e^2} = 14e. \] Now we can substitute back into the quadratic formula: \[ x = \frac{2e \pm 14e}{12}. \] This simplifies to: \[ x = \frac{16e}{12} = \frac{4e}{3} \quad \text{and} \quad x = \frac{-12e}{12} = -e. \] Since \( x \) must be positive (as it is inside logarithms), we take: \[ x = \frac{4e}{3}. \] Thus, the solution to the equation is: \[ x = \frac{4e}{3}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad