Pregunta
upstudy study bank question image url

1. \( 2 x^{5}-8 x^{4}-10 x^{3}=0 \)

Ask by Bob Morgan. in Honduras
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are \(x=-1\), \(x=0\), and \(x=5\).

Solución

Solve the equation \( 2x^5-8x^4-10x^3=0 \). Solve the equation by following steps: - step0: Solve for \(x\): \(2x^{5}-8x^{4}-10x^{3}=0\) - step1: Factor the expression: \(2x^{3}\left(x-5\right)\left(x+1\right)=0\) - step2: Divide both sides: \(x^{3}\left(x-5\right)\left(x+1\right)=0\) - step3: Separate into possible cases: \(\begin{align}&x^{3}=0\\&x-5=0\\&x+1=0\end{align}\) - step4: Set the base equal to 0: \(\begin{align}&x=0\\&x=5\\&x=-1\end{align}\) - step5: Rewrite: \(x_{1}=-1,x_{2}=0,x_{3}=5\) The solutions to the equation \(2x^{5}-8x^{4}-10x^{3}=0\) are \(x=-1\), \(x=0\), and \(x=5\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the equation \( 2x^{5}-8x^{4}-10x^{3}=0 \), we first factor out the greatest common factor, which is \( 2x^{3} \): \[ 2x^{3}(x^{2}-4x-5)=0 \] Now, we can set each factor to zero. The first factor gives us \( 2x^{3}=0 \) leading to \( x=0 \). The second factor, \( x^{2}-4x-5=0 \), can be solved using the quadratic formula \( x=\frac{-b \pm \sqrt{b^{2}-4ac}}{2a} \). Substituting \( a=1 \), \( b=-4 \), and \( c=-5 \): \[ x=\frac{4 \pm \sqrt{(-4)^{2}-4(1)(-5)}}{2(1)}=\frac{4 \pm \sqrt{16+20}}{2}=\frac{4 \pm \sqrt{36}}{2}=\frac{4 \pm 6}{2} \] This gives us the solutions \( x=5 \) and \( x=-1 \). So the final solutions are \( x=0, x=5, x=-1 \). --- In the 17th century, when polynomial equations began to capture the attention of mathematicians, solutions like these became foundational to algebra. Famous mathematicians like René Descartes and Isaac Newton developed methods for solving higher degree polynomials, setting the stage for modern algebra. Today, understanding how to factor and solve polynomials is a vital skill in both theoretical and applied mathematics! If you're venturing further into polynomial roots, consider diving into synthetic division when handling higher-degree polynomials or using the Rational Root Theorem to test possible rational roots. Mistakes often involve skipping steps in factoring or overlooking simpler roots like \( x=0 \). Always double-check your factors!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad