Use the quadratic formula to find exact solutions. \( 9 x^{2}+6 x=-5 \) \( x=\square \) (Simplify your answer. Type your answer in the form a + bi. Use a comma to separate answers as needed. Use integers or fractions for any numbers in the expression.)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To solve the equation \( 9x^2 + 6x + 5 = 0 \) using the quadratic formula, we start by identifying \( a = 9 \), \( b = 6 \), and \( c = 5 \). The quadratic formula is given by: \[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}} \] First, we calculate the discriminant: \[ b^2 - 4ac = 6^2 - 4 \cdot 9 \cdot 5 = 36 - 180 = -144 \] Since the discriminant is negative, we will have complex solutions. Now we plug it into the formula: \[ x = \frac{{-6 \pm \sqrt{{-144}}}}{{2 \cdot 9}} = \frac{{-6 \pm 12i}}{{18}} = \frac{{-1 \pm 2i}}{{3}} \] Thus, the exact solutions are: \[ x = -\frac{1}{3} + \frac{2}{3}i, -\frac{1}{3} - \frac{2}{3}i \]
