Write the quadratic function in the form \( y=a(x-h)^{2}+k \) and sketch its graph. \( y=x^{2}+12 x \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To rewrite the function \( y = x^2 + 12x \) in the vertex form \( y = a(x-h)^2 + k \), we can complete the square. 1. Start with \( y = x^2 + 12x \). 2. Take half of the coefficient of \( x \) (which is 12), square it: \( (12/2)^2 = 36 \). 3. Then, rewrite the function as \( y = (x^2 + 12x + 36) - 36 \). 4. This simplifies to \( y = (x + 6)^2 - 36 \). So, the quadratic function in vertex form is \( y = 1(x + 6)^2 - 36 \). Now for the sketch: - The vertex is at point (-6, -36). - This is a parabola that opens upwards, with the vertex being the minimum point of the graph. To visualize it, draw a U-shaped curve that dips down to the vertex (-6, -36) and then rises back up on either side, showing the classic parabolic shape!
