signo de \( m \) y \( n \) en cada uno de los sigulentes a. \( m m>0 \) y \( m+n>0 \) a. \( m n>0 \) y \( m+n<0 \) b. \( m n<0 \) el c. \( m m<0 \) y \( m-n>0 \) d. \( m n<0 \) y \( m-n<0 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
Para el inciso a, si \( m > 0 \) y \( m+n > 0 \), podemos concluir que \( n \) también debe ser mayor que 0 o menor que 0, pero suficientemente pequeño; en este caso, el signo de \( n \) puede ser positivo o negativo, dependiendo del tamaño de \( n \) respecto a \( m \). En el inciso b, si \( m n > 0 \) y \( m + n < 0 \), esto implica que ambos \( m \) y \( n \) son números negativos porque el producto es positivo, pero también su suma es negativa, sugiriendo que ambos números son suficientemente grandes en valor absoluto y negativos para que su suma siga siendo negativa.
