Pregunta
upstudy study bank question image url

A raindrop of mass \( m_{1}=66.4 \mathrm{mg} \) (that is milli-gram) falls in quiet air (no wind). Due to the air resistance force, the drop has a maximum velocity called the terminal velocity of magnitude, \( v_{t}=16.5 \mathrm{~m} / \mathrm{s} \), which is reached high above ground. a) What would be the weight of the rain drop after it reaches terminal velocity and before it reaches ground? \( \dot{F}_{g}=0.000651 \mathrm{~N} \times \hat{j} \) b) What would be the weight of the rain drop before it reaches terminal velocity. \( \dot{F}_{g}=0.000651 \quad \times \hat{j} \) c) What would be the acceleration of the rain drop after it reaches terminal velocity and before it reaches ground? \( \dot{a}=0 \mathrm{~m} / \mathrm{s}^{\wedge} 2 \) d) What would be the air resistance force acting on the rain drop after it reaches terminal velocity and before it reaches ground?. \( \dot{F}_{R}=0.000651 \mathrm{~N} \)

Ask by Medina George. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After reaching terminal velocity, the raindrop's weight is 0.000651 N downward. Before reaching terminal velocity, its weight is also 0.000651 N downward. At terminal velocity, the raindrop's acceleration is 0 m/s². The air resistance force acting on it at terminal velocity is 0.000651 N upward.

Solución

We begin by noting that the mass of the raindrop is   m₁ = 66.4 mg = 66.4 × 10⁻⁶ kg. Since the gravitational force (weight) is given by   F_g = m₁g with g ≈ 9.81 m/s², we compute   F_g = 66.4 × 10⁻⁶ kg × 9.81 m/s² ≈ 0.000651 N. The answers for each part are as follows: a) After the raindrop reaches terminal velocity (and high above ground) its weight is still given by mg. Thus:   F_g = 0.000651 N (directed downward, i.e., 0.000651 N × ĵ). b) Before the drop reaches terminal velocity, its weight is also mg. So, irrespective of its speed, the gravitational force remains:   F_g = 0.000651 N (directed downward). c) At terminal velocity the forces on the raindrop are balanced (air resistance equals the weight), so there is no net force. Therefore, the acceleration is:   a = 0 m/s². d) Since at terminal velocity the net force is zero, the magnitude of the upward air resistance force must equal the gravitational force in magnitude. Therefore, the air resistance force is:   F_R = 0.000651 N (directed upward). In summary:  a) Weight after terminal velocity: F_g = 0.000651 N × ĵ  b) Weight before terminal velocity: F_g = 0.000651 N × ĵ  c) Acceleration at terminal velocity: 0 m/s²  d) Air resistance force at terminal velocity: F_R = 0.000651 N (upward)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

When a raindrop falls, it experiences two main forces: gravity pulling it down and air resistance pushing it up. Once the drop reaches terminal velocity, these forces balance each other out – this means the weight of the raindrop is effectively equal to the air resistance force at that moment. So, after reaching terminal velocity, the raindrop’s weight of \(0.000651 \, \text{N}\) exactly counters the air resistance. Before reaching terminal velocity, the raindrop is accelerating downward since the force of gravity is greater than the air resistance. As the speed increases, so does the air resistance until it eventually matches the gravitational force, resulting in no further acceleration. You can imagine it like a roller coaster building speed on the way down until it glides evenly!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad