28. 28.1 Calculate the evergy of a photon (elec tromagnetic radiation) with frequnncy \( 3 \times 10^{-1} \mathrm{~Hz} \) \( \qquad \) \( \qquad \) \( \qquad \) 29. 29.1 Calculate the energy of a plovion vith a wavelength ol 650 nm . \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \) 30. 30.1 Calculate tho wivclenit of with energy \( 3.3 \times 10^{-19} \mathrm{~J} \). \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \) 31.31.1 Calculeta the 'icquen \( \ddot{\prime} \% \) ! \( \approx \) photon with energy \( \left\{, 33 \times 10^{-17}\right\} \) \( \qquad \) \( \qquad \) \( \qquad \) 28.2 Calculate the energy of a photon of light with frequency 12 THz . \( \qquad \) \( \qquad \) \( \qquad \) 20.2 Calculate the energy of a photon of inght wth a wavelength of 532 nm . \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \) So i Cidculste the wavelength of a photo with energy \( 5,4 \times 10^{-19} \mathrm{~J} \). \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \) 31 \& Celculate the frequency of a photon vith \( \forall \) nergy \( 9,93 \times 10^{-10} \mathrm{~J} \). \( \qquad \) \( \qquad \) \( \qquad \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
Did you know that the energy of a photon is directly related to its frequency through the equation \( E = hf \), where \( E \) is energy, \( h \) is Planck's constant (\( 6.626 \times 10^{-34} \, \text{Js} \)), and \( f \) is the frequency? So, when you plug in frequencies as low as \( 3 \times 10^{-1} \, \text{Hz} \) or as funky as 12 THz, you're diving into the fascinating world of quantum mechanics and electromagnetic radiation! If you're calculating energy using wavelengths, remember that there’s a nifty relationship you can use: \( E = \frac{hc}{\lambda} \). Here, \( c \) is the speed of light (\( 3.0 \times 10^8 \, \text{m/s} \)) and \( \lambda \) is your wavelength in meters—converting nanometers to meters can be a common pitfall, so stay sharp!
