Use counting to determine the whole number that corresponds to the cardinality of these
sets.
(a) \( A=\{x \mid x \in N \) and \( 16
Ask by Guzman Young. in the United States
Feb 27,2025
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To solve for the cardinality of the set \( A \), we need to identify the natural numbers (N) that fit the condition \( 16 < x \leq 26 \). The numbers that satisfy this are \( 17, 18, 19, 20, 21, 22, 23, 24, 25, \) and \( 26 \). That's a total of 10 whole numbers. So, \( n(A) = 10 \). For set \( B \), we have the equation \( x - 5 = x \). This simplifies to \( -5 = 0 \), which is not possible for any value of \( x \). Thus, there are no elements in set \( B \); hence, it is an empty set. So, \( n(B) = 0 \).
