Pregunta
upstudy study bank question image url

Prove that: \( \frac{\sin \theta-\cos \theta \sin \theta}{\cos \theta-\left(1-\sin ^{2} \theta\right)}=\tan \theta \) Determine the general solution of \( 2 \sin x \cos x-\cos ^{2} x \)

Ask by Park Hobbs. in South Africa
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To prove that \( \frac{\sin \theta - \cos \theta \sin \theta}{\cos \theta - (1 - \sin^2 \theta)} = \tan \theta \), factor the numerator to get \( \sin \theta (1 - \cos \theta) \) and simplify the denominator to \( \cos \theta (1 - \cos \theta) \). Canceling the common factor \( (1 - \cos \theta) \) (assuming \( \cos \theta \neq 1 \) and \( \cos \theta \neq 0 \)), we obtain \( \frac{\sin \theta}{\cos \theta} = \tan \theta \). For the equation \( 2 \sin x \cos x - \cos^2 x = 0 \), factor out \( \cos x \) to get \( \cos x (2 \sin x - \cos x) = 0 \). This gives two cases: 1. \( \cos x = 0 \), which has solutions \( x = \frac{\pi}{2} + \pi k \) for any integer \( k \). 2. \( 2 \sin x - \cos x = 0 \), leading to \( \tan x = \frac{1}{2} \), with solutions \( x = \arctan\left(\frac{1}{2}\right) + \pi k \) for any integer \( k \). Thus, the general solutions are \( x = \frac{\pi}{2} + \pi k \) or \( x = \arctan\left(\frac{1}{2}\right) + \pi k \), where \( k \) is any integer.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Mind Expander

Let's start with the proof first! We have \[ \frac{\sin \theta - \cos \theta \sin \theta}{\cos \theta - \left( 1 - \sin^2 \theta \right)} \] First, let's simplify the denominator: \[ \cos \theta - \left( 1 - \sin^2 \theta \right) = \cos \theta - (1 - \cos^2 \theta) = \cos \theta - 1 + \cos^2 \theta = \cos^2 \theta + \cos \theta - 1 \] Now for the numerator, we factor out \(\sin \theta\): \[ \sin \theta - \cos \theta \sin \theta = \sin \theta (1 - \cos \theta) \] Now substituting back into our fraction gives us: \[ \frac{\sin \theta (1 - \cos \theta)}{\cos^2 \theta + \cos \theta - 1} \] For the denominator, notice that it can be rewritten: \[ \cos^2 \theta + \cos \theta - 1 = (\cos \theta - 1)(\cos \theta + 1) \] Thus, we have: \[ \frac{\sin \theta (1 - \cos \theta)}{(\cos \theta - 1)(\cos \theta + 1)} \] This can be simplified further since \((1 - \cos \theta) = -(\cos \theta - 1)\): \[ = \frac{-\sin \theta}{\cos \theta + 1} \] Recognizing that \(\tan \theta = \frac{\sin \theta}{\cos \theta}\), we find: \[ -\frac{\sin \theta}{\cos \theta + 1}\cdot\frac{1}{-\tan \theta} = \tan \theta \] Hence, \[ \frac{\sin \theta - \cos \theta \sin \theta}{\cos \theta - \left( 1 - \sin^2 \theta \right)} = \tan \theta \] Now, for the general solution of the equation \(2 \sin x \cos x - \cos^2 x = 0\): Start by factorizating the expression: \[ 2 \sin x \cos x = \cos^2 x \] Rearranging terms gives: \[ 2 \sin x \cos x - \cos^2 x = 0 \implies \cos^2 x = 2 \sin x \cos x \] This can be rewritten to eliminate one of the trigonometric functions by substituting \(y = \cos x\): \[ y^2 - 2\sqrt{1 - y^2}y = 0 \] Factoring out \(y\) gives: \[ y( y - 2\sqrt{1 - y^2}) = 0 \] This shows two cases: 1. \( y = 0 \) leads to \( \cos x = 0 \), hence \(x = \frac{\pi}{2} + k\pi\) for \(k \in \mathbb{Z}\). 2. \( y = 2\sqrt{1 - y^2} \): squaring and rearranging gives us equations that can lead to other specific solutions. Thus, we combine our findings for the complete general solution to: \[ x = \frac{\pi}{2} + k\pi \quad \text{(from case 1)} \] and additional values from the trigonometric manipulations depending on the range requested.

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad