Prove that: \( \frac{\sin \theta-\cos \theta \sin \theta}{\cos \theta-\left(1-\sin ^{2} \theta\right)}=\tan \theta \) Determine the general solution of \( 2 \sin x \cos x-\cos ^{2} x \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
Let's start with the proof first! We have \[ \frac{\sin \theta - \cos \theta \sin \theta}{\cos \theta - \left( 1 - \sin^2 \theta \right)} \] First, let's simplify the denominator: \[ \cos \theta - \left( 1 - \sin^2 \theta \right) = \cos \theta - (1 - \cos^2 \theta) = \cos \theta - 1 + \cos^2 \theta = \cos^2 \theta + \cos \theta - 1 \] Now for the numerator, we factor out \(\sin \theta\): \[ \sin \theta - \cos \theta \sin \theta = \sin \theta (1 - \cos \theta) \] Now substituting back into our fraction gives us: \[ \frac{\sin \theta (1 - \cos \theta)}{\cos^2 \theta + \cos \theta - 1} \] For the denominator, notice that it can be rewritten: \[ \cos^2 \theta + \cos \theta - 1 = (\cos \theta - 1)(\cos \theta + 1) \] Thus, we have: \[ \frac{\sin \theta (1 - \cos \theta)}{(\cos \theta - 1)(\cos \theta + 1)} \] This can be simplified further since \((1 - \cos \theta) = -(\cos \theta - 1)\): \[ = \frac{-\sin \theta}{\cos \theta + 1} \] Recognizing that \(\tan \theta = \frac{\sin \theta}{\cos \theta}\), we find: \[ -\frac{\sin \theta}{\cos \theta + 1}\cdot\frac{1}{-\tan \theta} = \tan \theta \] Hence, \[ \frac{\sin \theta - \cos \theta \sin \theta}{\cos \theta - \left( 1 - \sin^2 \theta \right)} = \tan \theta \] Now, for the general solution of the equation \(2 \sin x \cos x - \cos^2 x = 0\): Start by factorizating the expression: \[ 2 \sin x \cos x = \cos^2 x \] Rearranging terms gives: \[ 2 \sin x \cos x - \cos^2 x = 0 \implies \cos^2 x = 2 \sin x \cos x \] This can be rewritten to eliminate one of the trigonometric functions by substituting \(y = \cos x\): \[ y^2 - 2\sqrt{1 - y^2}y = 0 \] Factoring out \(y\) gives: \[ y( y - 2\sqrt{1 - y^2}) = 0 \] This shows two cases: 1. \( y = 0 \) leads to \( \cos x = 0 \), hence \(x = \frac{\pi}{2} + k\pi\) for \(k \in \mathbb{Z}\). 2. \( y = 2\sqrt{1 - y^2} \): squaring and rearranging gives us equations that can lead to other specific solutions. Thus, we combine our findings for the complete general solution to: \[ x = \frac{\pi}{2} + k\pi \quad \text{(from case 1)} \] and additional values from the trigonometric manipulations depending on the range requested.
