Pregunta
upstudy study bank question image url

The value \( V \) of a certain automobile that is tyears old can be modeled by \( V(t)=14,111(0.81)^{t} \). According to the model, when will the car be worth each of the following amounts? (a) \( \$ 7000 \) (b) \( \$ 6000 \) (c) \( \$ 4000 \) (a) The car will be worth \( \$ 7000 \) after - y years. (Type an integer or a decimal rounded to the nearest tenth as needed.) (b) The car will be worth \( \$ 6000 \) after \( \square \) years. (Type an integer or a decimal rounded to the nearest tenti as needed.) (c) The car will be worth \( \$ 4000 \) after \( \square \) years. (Type an integer or a decimal rounded to the nearest tentiras needed.)

Ask by Estrada Weaver. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The car will be worth: (a) \$7000 after approximately 3.3 years. (b) \$6000 after approximately 4.1 years. (c) \$4000 after approximately 6.0 years.

Solución

To find when the car will be worth each of the given amounts, we need to solve the equation \( V(t) = 7000 \), \( V(t) = 6000 \), and \( V(t) = 4000 \) for \( t \) using the given model \( V(t) = 14,111(0.81)^t \). Let's solve each equation step by step: (a) \( V(t) = 7000 \): \[ 14,111(0.81)^t = 7000 \] (b) \( V(t) = 6000 \): \[ 14,111(0.81)^t = 6000 \] (c) \( V(t) = 4000 \): \[ 14,111(0.81)^t = 4000 \] Now, let's solve each equation for \( t \). Solve the equation by following steps: - step0: Solve for \(t\): \(14111\times 0.81^{t}=7000\) - step1: Convert the expressions: \(14111\left(\frac{81}{100}\right)^{t}=7000\) - step2: Multiply by the reciprocal: \(14111\left(\frac{81}{100}\right)^{t}\times \frac{1}{14111}=7000\times \frac{1}{14111}\) - step3: Multiply: \(\left(\frac{81}{100}\right)^{t}=\frac{7000}{14111}\) - step4: Take the logarithm of both sides: \(\log_{\frac{81}{100}}{\left(\left(\frac{81}{100}\right)^{t}\right)}=\log_{\frac{81}{100}}{\left(\frac{7000}{14111}\right)}\) - step5: Evaluate the logarithm: \(t=\log_{\frac{81}{100}}{\left(\frac{7000}{14111}\right)}\) - step6: Simplify: \(t=\frac{\log_{\frac{9}{10}}{\left(7000\right)}-\log_{\frac{9}{10}}{\left(14111\right)}}{2}\) The solution to the equation \( V(t) = 7000 \) is \( t \approx 3.326884 \) years. Now, let's solve the equation \( V(t) = 6000 \) for \( t \). Solve the equation by following steps: - step0: Solve for \(t\): \(14111\times 0.81^{t}=6000\) - step1: Convert the expressions: \(14111\left(\frac{81}{100}\right)^{t}=6000\) - step2: Multiply by the reciprocal: \(14111\left(\frac{81}{100}\right)^{t}\times \frac{1}{14111}=6000\times \frac{1}{14111}\) - step3: Multiply: \(\left(\frac{81}{100}\right)^{t}=\frac{6000}{14111}\) - step4: Take the logarithm of both sides: \(\log_{\frac{81}{100}}{\left(\left(\frac{81}{100}\right)^{t}\right)}=\log_{\frac{81}{100}}{\left(\frac{6000}{14111}\right)}\) - step5: Evaluate the logarithm: \(t=\log_{\frac{81}{100}}{\left(\frac{6000}{14111}\right)}\) - step6: Simplify: \(t=\frac{\log_{\frac{9}{10}}{\left(6000\right)}-\log_{\frac{9}{10}}{\left(14111\right)}}{2}\) The solution to the equation \( V(t) = 6000 \) is \( t \approx 4.058423 \) years. Finally, let's solve the equation \( V(t) = 4000 \) for \( t \). Solve the equation by following steps: - step0: Solve for \(t\): \(14111\times 0.81^{t}=4000\) - step1: Convert the expressions: \(14111\left(\frac{81}{100}\right)^{t}=4000\) - step2: Multiply by the reciprocal: \(14111\left(\frac{81}{100}\right)^{t}\times \frac{1}{14111}=4000\times \frac{1}{14111}\) - step3: Multiply: \(\left(\frac{81}{100}\right)^{t}=\frac{4000}{14111}\) - step4: Take the logarithm of both sides: \(\log_{\frac{81}{100}}{\left(\left(\frac{81}{100}\right)^{t}\right)}=\log_{\frac{81}{100}}{\left(\frac{4000}{14111}\right)}\) - step5: Evaluate the logarithm: \(t=\log_{\frac{81}{100}}{\left(\frac{4000}{14111}\right)}\) - step6: Simplify: \(t=\frac{\log_{\frac{9}{10}}{\left(4000\right)}-\log_{\frac{9}{10}}{\left(14111\right)}}{2}\) The solution to the equation \( V(t) = 4000 \) is \( t \approx 5.982603 \) years. Therefore, the car will be worth: (a) $7000 after approximately 3.326884 years. (b) $6000 after approximately 4.058423 years. (c) $4000 after approximately 5.982603 years.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find out when the car will be worth each respective amount, we can solve each equation \( 14,111(0.81)^t = \text{Value} \). (a) For \( \$ 7000 \): \[ 7000 = 14111(0.81)^t \] Dividing both sides by 14111 gives: \[ \frac{7000}{14111} = (0.81)^t \] Taking the logarithm of both sides, \[ \log\left(\frac{7000}{14111}\right) = t \log(0.81) \] Solving for \( t \): \[ t = \frac{\log\left(\frac{7000}{14111}\right)}{\log(0.81)} \approx 4.8 \] So, the car will be worth \( \$ 7000 \) after approximately **4.8 years**. (b) For \( \$ 6000 \): \[ 6000 = 14111(0.81)^t \] Dividing both sides by 14111, \[ \frac{6000}{14111} = (0.81)^t \] Taking logarithms gives: \[ \log\left(\frac{6000}{14111}\right) = t \log(0.81) \] Solving for \( t \): \[ t = \frac{\log\left(\frac{6000}{14111}\right)}{\log(0.81)} \approx 6.8 \] Thus, the car will be worth \( \$ 6000 \) after approximately **6.8 years**. (c) For \( \$ 4000 \): \[ 4000 = 14111(0.81)^t \] Again dividing by 14111, \[ \frac{4000}{14111} = (0.81)^t \] Then taking logarithms, we have: \[ \log\left(\frac{4000}{14111}\right) = t \log(0.81) \] Solving for \( t \): \[ t = \frac{\log\left(\frac{4000}{14111}\right)}{\log(0.81)} \approx 9.3 \] Consequently, the car will be worth \( \$ 4000 \) after approximately **9.3 years**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad