Pregunta
\( f(x)=3 x^{2}+24 x+48 \) What is the value of the discriminant of \( f \) ? How many distinct real number zeros does \( f \) have? He
Ask by Ramos Goodwin. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The discriminant is 0, and \( f(x) \) has exactly one distinct real zero.
Solución
The discriminant is calculated as b² - 4ac. Here, a = 3, b = 24, and c = 48:
Discriminant = 24² - 4 × 3 × 48 = 576 - 576 = 0.
A discriminant of 0 means the quadratic has exactly one distinct real zero (a repeated or double root).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To find the discriminant of the quadratic function \( f(x) = 3x^2 + 24x + 48 \), we use the formula \( D = b^2 - 4ac \). Here, \( a = 3 \), \( b = 24 \), and \( c = 48 \). Plugging in these values, we calculate \( D = 24^2 - 4 \times 3 \times 48 = 576 - 576 = 0 \). So, the value of the discriminant is 0. A discriminant of 0 means that the quadratic has exactly one distinct real number zero (or root). This root is referred to as a repeated root, indicating that the graph of the function touches the x-axis at exactly one point.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium