Pregunta
upstudy study bank question image url

5. A student athlete runs \( 3 \frac{1}{3} \) miles in 30 minutes. A professional runner can run \( 1 \frac{1}{4} \) times as far in 30 minutes. How far can the professional runner run in 30 minutes?

Ask by Hanson Ford. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The professional runner can run \( 4 \frac{1}{6} \) miles in 30 minutes.

Solución

Alright, I need to figure out how far the professional runner can run in 30 minutes based on the information provided. Let's break down the problem step by step. First, the student athlete runs \( 3 \frac{1}{3} \) miles in 30 minutes. To make calculations easier, I'll convert the mixed number to an improper fraction. \( 3 \frac{1}{3} \) is the same as \( \frac{10}{3} \) miles. Next, the professional runner can run \( 1 \frac{1}{4} \) times as far as the student athlete in the same amount of time. Again, converting \( 1 \frac{1}{4} \) to an improper fraction gives me \( \frac{5}{4} \). Now, to find out how far the professional runner can run, I'll multiply the student athlete's distance by \( \frac{5}{4} \): \[ \text{Professional Runner's Distance} = \frac{10}{3} \times \frac{5}{4} \] Multiplying these fractions: \[ \frac{10}{3} \times \frac{5}{4} = \frac{10 \times 5}{3 \times 4} = \frac{50}{12} \] Simplifying \( \frac{50}{12} \) by dividing both numerator and denominator by 2: \[ \frac{50 \div 2}{12 \div 2} = \frac{25}{6} \] So, the professional runner can run \( \frac{25}{6} \) miles in 30 minutes. To express this as a mixed number: \[ \frac{25}{6} = 4 \frac{1}{6} \text{ miles} \] But wait, let me double-check my calculations to ensure accuracy. Starting from the beginning: - Student athlete: \( 3 \frac{1}{3} = \frac{10}{3} \) miles - Professional runner: \( 1 \frac{1}{4} = \frac{5}{4} \) times the student's distance - Calculation: \( \frac{10}{3} \times \frac{5}{4} = \frac{50}{12} = \frac{25}{6} = 4 \frac{1}{6} \) miles Everything checks out. Therefore, the professional runner can run \( 4 \frac{1}{6} \) miles in 30 minutes.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find out how far a professional runner can run in 30 minutes, we first need to convert \( 3 \frac{1}{3} \) miles into an improper fraction. This gives us \( \frac{10}{3} \) miles. Now, multiplying this distance by \( 1 \frac{1}{4} \), which is \( \frac{5}{4} \) can be done as follows: \[ \frac{10}{3} \times \frac{5}{4} = \frac{50}{12} = \frac{25}{6} \] Converting \( \frac{25}{6} \) miles back to a mixed number, we get \( 4 \frac{1}{6} \) miles. So, a professional runner can run \( 4 \frac{1}{6} \) miles in 30 minutes! Now, let's highlight some intriguing facts: Did you know that the distance covered by top professional runners is often measured by their ability to maintain a certain pace over various distances, setting world records in the process? It's not just about raw speed; it's also about stamina, strategy, and often the perfect fueling pre-race! Moreover, the mental aspect of running is just as crucial! Many athletes use visualization techniques to imagine their success before races. This method can enhance performance, showing that running isn’t just a physical endeavor—it’s a mental game as well!

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad