Pregunta
upstudy study bank question image url

STEPS SOLUTIONS 1. Arrange the data in ascending order. 2. Locate the position of the given data. 3. Interpolate a. Find the difference ... b. Multiply the result ... c. Add the result ... 4. Interpret the result

Ask by Gough Murray. in the Philippines
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To estimate an unknown value using linear interpolation: 1. **Arrange Data**: List your known data points in order from smallest to largest. 2. **Find Interval**: Identify the two data points between which your unknown value lies. 3. **Calculate Difference**: Determine how far your unknown value is from the lower known point. 4. **Interpolate**: Use the difference and the ratio of the change in y over the change in x to find the estimated value. 5. **Interpret**: The result is your estimated value for the unknown point. This method assumes a straight-line relationship between the known data points.

Solución

Below is an explanation of each step when using linear interpolation to estimate an unknown value between known data points: 1. Arrange the data in ascending order.  • List your known values (for both the independent variable, often x, and the dependent variable, often y) from smallest to largest.  • This ensures you can easily find the two data points between which your unknown value lies. 2. Locate the position of the given data.  • Identify the interval that contains the given value of x (or whatever independent variable you’re using).  • In other words, find the two consecutive data points (x₁, y₁) and (x₂, y₂) such that x₁ ≤ x (given) ≤ x₂. 3. Interpolate.  a. Find the difference between the given value and the lower bound of the interval.   • Compute (x – x₁). This tells you how far your point is from the lower known data point.  b. Multiply the difference by the ratio of the change in y over the change in x.   • Calculate the ratio (y₂ – y₁) / (x₂ – x₁).   • Multiply (x – x₁) by this ratio to see how much the dependent variable should change relative to the given x.  c. Add the result to the lower y-value to obtain the interpolated value.   • That is, y = y₁ + (x – x₁) × [(y₂ – y₁) / (x₂ – x₁)]. 4. Interpret the result.  • The computed value of y is your estimation for the unknown point corresponding to the given x.  • Ensure the result makes sense in the context of your data, and note that this linear interpolation provides an estimate assuming a straight-line change between the known points. By following these steps, you correctly position your new data point between the given range and estimate the corresponding value using the linear relationship between the two adjacent known points.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that interpolation techniques like this one have been widely used since ancient Babylonian times? They would estimate the values of unknown points on a curve by creating and using linear segments. It's fascinating how mathematics has evolved from these early practices into the sophisticated methods we use today! In real life, interpolation is a powerful tool in fields like finance and meteorology. For instance, when predicting future stock prices or estimating temperatures at a given time, analysts often interpolate data between known points. This allows them to make informed decisions, which is essentially taking a guess but with some smart math behind it! So the next time you check the weather forecast or review stock trends, remember you're seeing interpolation in action!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad