Pregunta
upstudy study bank question image url

One number is 4 more than another, and their sum is 60 What is the smaller number? If \( x= \) the larger number and \( y \) = the smaller number, then which of the following systems could be used to solve the problem? \( \begin{array}{l}x+y=60 \text { and } x-y=4 \\ x+y=60 \text { and } x+y=4\end{array} \)

Ask by Williams Young. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct system of equations is: - \( x + y = 60 \) - \( x - y = 4 \) This system can be used to find the smaller number, which is 28.

Solución

Let y be the smaller number and x be the larger number. Since one number is 4 more than the other, we have:   x = y + 4  ⟹  x - y = 4 We're also given that their sum is 60:   x + y = 60 Thus, the correct system of equations is:   x + y = 60  and  x - y = 4 To find the smaller number, substitute x = y + 4 into the sum equation:   (y + 4) + y = 60   2y + 4 = 60   2y = 56   y = 28 So, the smaller number is 28, and the system of equations that could be used is:   x + y = 60  and  x - y = 4.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve for the smaller number, we can set up a system of equations based on the information given. We know that the larger number \( x \) is 4 more than the smaller number \( y \), which we can express as \( x = y + 4 \). Additionally, we know their sum is 60, so we also have \( x + y = 60 \). Therefore, the correct system of equations is \( x + y = 60 \) and \( x - y = 4 \). Now, let’s find the value of \( y \). By substituting \( x \) in the first equation using \( x = y + 4 \): \((y + 4) + y = 60\) simplifies to \(2y + 4 = 60\). Solving for \(y\), we get \(2y = 56\) or \(y = 28\). So the smaller number is 28! A little historical nugget: Systems of equations have their roots tracing back to ancient civilizations! The Babylonians were adept at solving linear equations as far back as 2000 BCE, using geometric methods — clever, right? For a practical twist, real-life situations often require you to set up equations like this when budgeting or planning. For instance, if one item costs more due to extra features, you could represent the prices as a system of equations to determine how much each item costs based on a total budget. It’s a handy tool for decision-making!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad