(b) \( \cot x=-\frac{1}{\sqrt{15}}, \frac{3 \pi}{2}
Ask by Wilson Hills. in Malaysia
Feb 27,2025
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To solve \( \cot x = -\frac{1}{\sqrt{15}} \) within the interval \( \frac{3 \pi}{2} < x < 2 \pi \), we start by recognizing that the cotangent function is negative in the fourth quadrant. Therefore, our angle \( x \) must be in this range. We know that: \[ \cot x = \frac{\cos x}{\sin x} \] Given \( \cot x = -\frac{1}{\sqrt{15}} \), we can express it in terms of sine and cosine: \[ \cos x = -\frac{1}{\sqrt{15}} \sin x \] Next, using the Pythagorean identity \( \sin^2 x + \cos^2 x = 1\), we can substitute \( \cos x \): \[ \sin^2 x + \left(-\frac{1}{\sqrt{15}} \sin x\right)^2 = 1 \] This simplifies to: \[ \sin^2 x + \frac{1}{15} \sin^2 x = 1 \] \[ \left(1 + \frac{1}{15}\right) \sin^2 x = 1 \] \[ \frac{16}{15} \sin^2 x = 1 \] \[ \sin^2 x = \frac{15}{16} \] \[ \sin x = -\frac{\sqrt{15}}{4} \] (Because \( \sin x \) is negative in the fourth quadrant.) Now, we find \( \cos x \) using this value: \[ \cos^2 x = 1 - \sin^2 x = 1 - \frac{15}{16} = \frac{1}{16} \] \[ \cos x = \frac{1}{4} \] (We take the positive root here, since cosine is positive in the fourth quadrant.) Finally, we can find \( x \) using the reference angle \( \theta \) where \( \cot \theta = \frac{1}{\sqrt{15}} \): \[ \theta = \tan^{-1}(\sqrt{15}) \implies x = 2\pi - \theta \] This can be computed for a more exact angle if needed, but \( x \) is: \[ x = 2\pi - \tan^{-1}(\sqrt{15}) \] This gives us the desired solution for \( x \).
